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ABSTRACT

A range network is defined to consist of ground stations and targets where
only distances between the two sets of points are observed. Such a network
is said to be fundamental when only those six constraints are used which are
needed to define the coordinate system for an adjustment. In some cases
when ground stations and/or targets have certain configurations, a unique
adjustment in terms of coordinates may be impossible, even when the number
of observations is sufficient and the coordinate system is uniquely defined.
Such configurations are said to be critical.

In this study, critical configurations are investigated in two separate
chapters. The first deals with ground stations lying all in a plane and the
second deals with ground stations generally distributed. The two kinds of
problems require different mathematical treatment and lead to quite different
conclusions,

A typical critical configuration when all ground stations are in a plane
arises when they all lie on one second order curve. When ground stations are
generally distributed a typical critical configuration may be represented by
all points of a network (ground stations and targets) lying on one second order
surface, If these and some other more complex distributions of points are

avoided, an adjustment of range networks yields a unique solution.

iii




ACKNOWLEDGEMENTS

The author wishes to acknowledge most deeply the help, encouragement,
and understanding of his advisor, Professor Ivan I. Mueller. He gave the
author all the support he could and sacrificed any amount of time to help to
clarify and improve different parts of this work.

The author is greatly indebted to Dr. Peter Meissl for his time and a
number of most valuable suggestions offered during many hours of discussions.
These discussions helped significantly in improving the quality of this work.
Dr. Peter Meissl also accepted to serve as a guest member on the author's
reading committee. Professors Urho A. Uotila and Richard H. Rapp
served on the author's reading committee and offered many valuable sugges-
tions and comments which helped to clarify several points.

A thorough proofreading of several parts of this work as well as valuable
help in editing at the final stages were offered to the author by his colleague,
Dr. Charles R. Schwarz.

A large amount of the computer time was furnished to the author by the
Instruction and Research Computer Center of The Ohio State University.

The financial support was granted to the author during his study at The
Ohio State University by the National Research Council of Canada and by the
National Aeronautics and Space Administration under Research Grant No.
NGL 36-008-093.

The author wishes to thank most heartily Miss Barbara Beer who typed
the whole work with more than professional patience and skills. The author
is indebted to her for the typing of long and extremely difficult text during
the working hours as well as in the evenings with patience, devotion and
ingenuity. He also wishes to thank Mrs. Evelyn Rist who outside her regular work,

offered to help in typing of some additional parts of this presentation.

iv




PREFACE. . .

ABSTRACT

TABLE OF CONTENTS

-------------------------------

ACKNOWLEDGEMENT . . .« v v v v v o v o o s o s o o s o o s o o o

LISTOF TABLES . . . .« v v v v v v v v v v v v v e e e e e e e

LISTOF FIGURES. . . v v v o v v e v e v e e v o o o s o o s o oo

TREATMENT OF RANGE OBSERVATIONS WITH ALL
GROUND STATIONSIN PLANE . . & v ¢ ¢ ¢ ¢ o o o 6 6 o o « o

1,1 Introduction . . & v v v v o v v v o o o o o o o 0 o v o 4 4o .

1.2 Basic Principle to Detect Singularity When Using
Range Observational Mode with Three Ground

Stations Observing All Targets . . . . . . . .« ¢ v ¢ o . . .

1.3 Range Observational Mode Investigations with

Observing Stationsin Plane . . . . . . . v ¢ ¢« v ¢ v o e 0 v o s

1.31
1.32

1,33

1.34

Singularity A). . . . . . o i v i e e e e e e e e e e e e e
Singularity B). . . . . . o v o v v v v e e e e e e e e e
1,321 General Considerations. . . . . . ... .. .. .
1.322 Computation of Critical Curve . . . . .. . ...
Singularity C). o v v o v v o o 4 v v e s e e e e e e e e e
1,331 Necessary Conditions to Avoid
Singularity C). . « v ¢ ¢« v ¢« e o o o 0 s s o o 4 o
1,332 Necessary and Sufficient Conditions
to Avoid Singularity C) , . . . . . . ¢ ¢ ¢ . . ..
1.333 Tllustration that Discarding of Singularity A)
and Singularity C) Yields Unique Solution
in Adjustment . . . . . .. . 0 e 000w o, .
Critical Configurations if All Ground Stations
Co-observe . ... .. e e e e e e e e e e e e e e e

Yot

(W]




1.4 Principle of Replacing of Stations . . . . . . . . . .. .. .. 47
1.41 One Replacement: Station 3 Replaced by
Station K . v v v v v v e e e e e e e e e e e e e e e e e e 49
1,411 Group j, Considered as ""Off-Plane
Targets' . o v v v v e v e v e e e e e e e e 63
1.412 Group j, Considered as '"In-Plane
Targets' . . v v v v vt e e e e e e e e e e s 65
1,413 Summary for Group j, Containing
"In-Plane Targets" . « « « ¢« ¢« ¢ o ¢« v v o v o . 102
1.42 Two Replacements: Stations 3 and 2 Replaced
by Stationskand s’ . . . .. ..o 104
1,43 More than Two Replacements . . . . . . . . . . . ¢ o o 116
1.5 Numerical Examples and Verifications of Theory . . . . . . . . 119
1.6 ConcluSiOnS . v ¢ ¢ ¢ v o o o & ¢ o ¢ o o a o s 6 o s o o o 5 o o o 138

2. TREATMENT OF RANGE OBSERVATIONS WITH GROUND
STATIONS GENERALLY DISTRIBUTED . . . . .« v ¢ ¢ ¢ o o o e o s 144

2.1 Introduction . . « v v ¢« v o ¢ v 4 0 e o e e e e e e e e e e e 144

2.2 Range Observations from Four Ground Stations in
General Configuration . . . . . . . ¢« v ¢ v v v v o o 0 o0 e o . 146

2.21 Critical Surface for Four Ground Stations

Using Determinant Approach ., . . .. ... .. . ... . 146
2,22 Critical Surface for Four Ground Stations
Using Canonical Approach . . . . . . v ¢ o v+ v o o o o 149

2.23 Computations of Critical Surface for Four

Ground Stations . . . . v v v v vt b b e e e e e e e 154
2.231 General Considerations . . . . . .. ... . ... 154
2.232 Critical Surface Algebraically,
In Local Coordinate System . . . . . . . . . . . 159
2.233 Practical Computations of
Critical Surface. . . . . . . . . ¢« . ¢ o v« . 163
2.3 Range Observations from Any Number of Ground
Stations with Three Stations Observing All Targets . ... .. . 165
2.31 Critical Surfaces Using Canonical Approach ., ... .. 165
2.32 Problem with Critical Surfaces Coinciding . . . . . . 172
2.321 General Considerations . . . « « v ¢ v o v « « o . 172
2.322 Critical Surface if All Ground
Stations Co-chserve . . . . . . v v o v v 0 v v 179

vi




2. 33 Independent Derivation of Singularity C) when

All Ground Stations are Lying in Plane . . . . .. . . . . 180
2.4 Brief Discussion Concerning Replacing of Stations . . . . . . . . 183
2.5 Numerical Examples and Verifications of Theory . . . . . . .. 185
2.6 CONCLUSIONS v ¢ v v o o s o o v o o o o o o v o o s+ o o o o o o o o 196

APPENDIX 1: Effect of Additional Observations on Variance-

Co-variance Matrix of the Same Set of Parameters . . . . . 200
APPENDIX 2: Best Fitting Plane . . . . o « « = ¢ ¢ v ¢ e o o o 0 o 0 o« o 206

A2.1 Transformation of General Method Adjustment
into the "A Method" . . . ¢ ¢« « v v ¢ ¢ o o o o o e o v o o 2 s e 208

A2.2 "Transformed Observation Equations" in the

Best Fitting Plane Problem . . . . . . . . ¢ ¢ o ¢ v v o o« 211
A2,.21 General Considerations, . . . . . . ¢« « ¢ « o & 211
A2.22 Approximate Values of Parameters . . .. . .. 212

A2.3 Summary of Formulas and Sequence of Operations
for the Best Fitting Plane Program . . . . « « « ¢« « « o ¢ « « =« 213

APPENDIX 3: Critical Curve in Local Coordinates as Obtained
Analytically by Fitting Second Order Curve to
Stations I through 5 . . . . . ¢ o ¢ v « v ¢« o o o o o o o v s 215

APPENDIX 4: Computation of Canonical Form of Second Order

(Hyper-) Surface, Given Explicitly . . ... ... ... .. 218
A4,1 Preliminary Transformation of Coordinates . ... ... ... 218
A4,2 Canonical Form of Second Order (Hyper-) Surface . .b ..... 220

A4,3 Canonical Form of Second Order Surface (in

Three Dimensional Space) . . . . . . . v . v v v s v v v v v o 224
A4.,4 Canonical Form of Second Order Curve . . . . . v v v v v v & . 234
APPENDIX 5: Some Special Cases of Singularity BY . . . . . .. ... .. 238
APPENDIX 6: Critical Surface in Local Coordinates as
Obtained Numerically by Fitting Second Order
Surface to Nine Points . . . .. ... .. ... ... ... 241
APPENDIX 7: Approximate Distance of a Point from Given Second
Order Surface . . . . . ¢ v v v v v v v e e e e e e e e 248

vii




A7.1 General Approach . . . . . ¢ . ¢ v i i e e e e e e e e e e
AT.2 Specific Approach . . . . . . . . ¢ i i i e e e e e e e

A7,3 Practical Computations with Critical Surface in
Canonical FOrm. . . . .+ v v v v v v e v v e e o e e v e e

APPENDIX 8: Critical Surface for Four Ground Stations . . . . . . . . .

A8.1 Critical Surface for Four Ground Stations in Local
Coordinates Using Taylor Expansion of Determinant,
as Function of Ground Station Number Four. . . . . . . . . . .

A8.2 Explicit Expression for Second Order Surface
G(X;;,gY4, Z4) = O e s e e e e e e e e e s e e s 4 o 8 o o o o o

REFERENCES , . .. .. e e e e e e e e e e e e e e e e e e e e e

viii




(1.2-1)

(1.2-2)
(1.3-1)

(1.3-2)

(1.4-1)

(1.4-2)

(1.4-3)

(1.4-4)

(1.4-5)

(1.4-6)

(1.5-1)
(1.5-2)

(1.5-3)

(1.5-4)

LIST OF TABLES

The A Matrix for Seven Ground Stations and Fifteen
Satellite Points .

Explicit Expression for A Matrix . . . . . . . .

Explicit Expression for X Matrix . . . . . .

Representation of Real Solutions for Second Degree
Equations in Two Variables

A Matrix with Station 3 Replaced by Station k
(General Distribution of Ground Stations) . . . . .

A Matrix with Station 3 Replaced by Station k
(Ground Stations in Plane) . o e

Systems (1.4-11) and (1.4-11a) Associated with
A MatriX. « v ¢ v v o 6 o o o o o o &

A Matrix with Stations 3 and 2 Replaced by
Stations k and s’, Respectively (Ground Stations
in Plane) . « + & o o ¢ 4 v s e s 6 6 s s e o .
A Matrix with Stations 3 and 2 Replaced by
Stations k and s’, Respectively (Ground Stations

in Plane) . . . .

Systems (1.4-95) and (1.4-952) Associated with
A MatrixX. o o o o o o o o o o o o o o o o

Cartesian Coordinates of Some Generated Points.
Different Configurations of Stations I, II, III, IV.

Results from the Adjustment of the Generated
Network . . ¢« & v v o v v v & s o o s o @

Quads of the Pacific Network . . .

ix

25

a6

107

109

111

121

123

124

126




(1.

(1.

(1.

.

@.

@.

@.

@.

@.

@.

@.
Q.

@.

5-8)

6-1)

2-1)

5-1)

5-2)

5-3)

5-4)

5-5)

5-6)
5-17)

5-8)

.6-1)

Quad f Using Different Sets of Inner Adjustment
Constraints . .

Modified Quads ¢ and g of the Pacific Network.

Results of Adjustment in Three Categories with
Ground Stations in Plane, Critical Curve Being
Ellipse .

Results of Adjustment in Two Categories with
Ground Stations in Plane, Critical Curve Being
Hyperbola. . . . . . . + « « v ¢ v « « &
Necessary and Sufficient Conditions to Avoid
Singular Solutions When All Ground Stations
are in a Plane .

Description of Pertinent Second Order Surfaces .

Coordinates of Nine Points to Define a Second
Order Surface. . . .

Coordinates of Six Main Surface Points and
Center of the Hyperboloid of One Sheet Defined
by Nine Points . . . . « « ¢« « &+ « &

Results of the Adjustment of One Quad in General
Configuration . . . . . . . . . « + + &

Results of Experiments in Example 2.

Coordinates of Some Points Related to Second
Order Surface of Example 3 . . .

Results of Experiments in Example 3.
Coordinates of Sixteen Points of Example 5 .

Nine Experiments Corresponding to Location
of Station 58

Necessary and Sufficient Conditions to Avoid
Singular Solutions When Ground Stations are
Generally Distributed

Page
126

127
131
132
143
156

185

186

187

190

181
192

194

198

188



LIST OF FIGURES

Ilustration of Singularity A): Station i is in the plane
of its observed targets .

Ilustration of Singularity B): Stations 1, 2, 3, observe
all targets; all stations are on a second order curve .

Illustration of Singularity C): Stations 1, 2, 3, observe
all targets; all stations observing off-plane targets are on
a second order curve with stations 1, 2, 3.

Ilustration of Singularity C): All stations observe all
targets; all stations are on a second order curve.

HNlustration of Singularity C): All stations observe all
targets; all targets are in a plane. . . . . . .

Ilustration of Critical Surfaces: Stations 1, 2, 3,
observe all targets; stations 4 and 5 together with their
satellite groups j, and js are on the second order sur-
faces S, and Ss, respectively; stations 1, 2, 3, are on
the second order intersection curve of surfaces S, and
Ss .

Illustration of Critical Surfaces: All stations observe all
targets; all stations and all targets are on a second order
surface

xi

Page

20

28

ot

45




1. TREATMENT OF RANGE OBSERVATIONS
WITH ALL GROUND STATIONS IN PLANE

1,1 Introduction

The goal of the present study is to investigate the possibility to use the
range observations between a set of ground stations and a set of targets (satel-
lite points) which together are said to form a range network. As in most
geodetic adjustments, the mathematical model for range observations is treated
in a linearized form. The adjustment procedure applied to this model is the
least squares method.

The only constraints necessary in range networks are the ones needed for
defining the coordinate system; three to define its position and three to define
its orientation, i.e., six constraints, Range observations being invariant
with respect to the coordinate system, they do not offer information about it;
thus, when an adjustment is performed in terms of coordinates a certain
coordinate system has to be defined. Any coordinate system thus defined
yields theoretically the same adjusted values of distances. In the theoretical
part of this investigation, a coordinate system is chosen such that the first
ground station is at its origin, the second one on its x axis and the third one
in its xy plane. For practical computations, that coordinate system may be
the most advantageous which renders the trace of the variance-covariance
matrix for the coordinates of all or certain selected points a minimum. The
constraints defining the coordinate system in this manner are called inner
adjustment constraints. The idea of using inner adjustment constraints was
first presented [13 J, then in [14 Tand [15 ], and recently in [1], Annex F
and in [9]. The problem of inner adjustment constraints is treated in great
detail in [16 7. Their application in connection with an actual adjustment

appeared in 27 and in [3 .




When only six coordinate-system-defining constraints are used, the net-
work is said to be fundamental. 1In this study, only fundamental networks are
investigated.

The type of observations considered in such networks are ranges from
ground stations to satellite points. No further distances or any other type of
measurements are used. In certain cases when ground stations and/or targets
are situated in special configurations, a unique adjustment is impossible even
if the number of observations is sufficient. Such critical configurations result
in singular solutions and their investigation is the subject of this work.

In this chapter, the ground stations are considered to be in one plane. 1In
sections 1.2 and 1, 3, three ground stations are considered to observe ranges
to all the satellite points. In section 1.4, the principle of replacing of stations
is introduced, which allows to use the derivations made in previous sections
for a more general case, when not all satellite positions are observed by three
stations, This leads to a case known in practice as "leapfrogging'.

The basic idea used in treating the networks where the ground stations are
approximately in one plane is to stipulate that theoretically all ground stations
are exactly in the plane and to find the critical loci of the points in the network
which will result in a singular solution. Applications for practical cases (where
the condition of coplanarity is only approximately fulfilled) follows from the
fact that conditions leading to singularity in theory lead to near-singularity
in practice, Examples of the correspondence between such theoretical and
practical configuration-conditions are the following:

(a) Targets on a straight line in theory correspond to
satellite positions on a relatively short pass in practice.

(b) Ground stations lying on a second order (plane) curve in
theory correspond in practice to ground stations in projection
on the (best fitting) plane lying on or near a second order

curve,



(¢) A satellite group lying theoretically in a plane
corresponds in practice to short satellite passes of
approximately the same altitude above the ground net-
work. This situation can arise when the same satellite
is observed on different passes. The plane fitted to
such targets is approximately parallel to the plane
fitted to the ground stations.

The main outcome of this investigation will be the detection of singularity
for the theoretical cases and the establishment of rules to avoid it. This is
equivalent to having range measurements alone as a working observational
mode for fundamental range networks with ground stations lying in or near

a plane.

1.2 Basic Principle to Detect Singularity When Using Range

Observational Mode with Three Ground Stations Observing All Targets

First a coordinate system will be defined, in which a cluster of points
will be adjusted so as to yield the relative position of all its points, Whenever
extra observations are used, the least squares adjustment will be applied. When
this relative position with the same adjusted ranges is unique or not unique, the
problem is said to be non-singular or singular respectively. For the sake of
simplicity in the derivations (range observations are invariant with respect to
the coordinate system), the origin of the coordinate system will be chosen to
coincide with one ground station, the x axis will pass through another, and
the xy plane will contain a thfrd ground station. These will also be the three
stations observing all the satellite points and will be numbered for all
the derivations and discussions as 1, 2, and 3, respectively. The six con-
straints defining this coordinate system, called LOCAL COORDINATE
SYSTEM are the only constraints to be used and thus such cluster of points

constitutes a fundamental network. The points 1, 2, and 3 before the adjustment




in the above coordinate system have the coordinates (0, 0, 0), (Xg, 0,0), (xa 3, 0)
and after the adjustment the coordinates (0,0, 0), (X3, 0,0), (X3,y%s, 0)
respectively (in order that x y plane of the local coordinate system be well

defined, ys # 0 has to hold; similarly for x axis x5 70).

Considering x = x*+dx, y* =y’ +dy, zt = z° + dz, the above

definition of the coordinate system corresponds to six constraints for the

parameters, namely:

dx; = 0, dy1 =0, dzg =0 ; dya =0, dza = 0; dzs = 0.  (1.2-1)

In the following, the coordinates of the ground stations will be denoted
by small letters and those of the satellite points by capital letters, as
well as the corresponding corrections; thus dx;, dy:, dz;, denote corrections
to the ith station and dX,, dY,, dZ,, denote corrections to the jth satellite.
Next, the observation equationsfor the least squares adjustment will be formed.,
Let al,, al, al;, denote directional cosines of the line connecting station
" with satellite "j'" with respect to the x, y, z axes of the local coordinate
system. With wvy; denoting the residual to Li? , observed distance between
i and j, where LY + vy = Lii (adjusted distance), the observation

equation for the distance i-j is of the form
/T %J (dX; - dxy) +atyj (dY; - dyi) +azij (dZy - dz1) + Ly, , 1.2-2)

Here Ly = fo - Litj where Lif is the distance i-j computed from
preliminary (approximate) coordinates.
In matrix form, the observation equations are written as (writing X

vector instead of dX):

V = AX + L
L? L° +V.

It

From the least squares adjustment it is obtained



X = - (A'pA)™ (ATPL).

Positive definite P matrix contains weights of the observed quantities:
when the observations are uncorrelated and of equal precision (i.e., coming

from the same population of random errors), then P = I (identity matrix)

can be used; this will be assumed throughout in this study.

The problem will then be singular if for the same set of L* or V
there are different solution sets X possible, or, which is the same, the
solution vector X (and thus the relative position of the cluster points)
corresponding to the same residual vector V is not unique.

Otherwise the problem is non-singular. I X denotes one solution,
X any other solutien and if o8X =X - X , then 00X = 0 as the only
possibility characterizes a non-singular problem.

Suppose

V = AX + L,

V = AX + L;
then

it

AX - X) = 0,

or
Gy B RAR (1:279)

where o 2u; o is the number of all observations, while u = 3 x (humber of all
points) - 6, i.e., the mumber of all unknown parameters,

Whenever extra observations are used, o >u and A is not a
square matrix,

Matrix equation (1.2-3) represents a homogenous system of "o
equations in the "u'" inknowns, which has always a solution, namely the
trivial solution, If rank A = u, then only the trivial solution of (1.2-3) is
possible and thus the problem is non-singular. Correspondingly, such A

oxu
matrix will be called here "non-singuiar A", On the other hand, if rank A<u,




the non-trivial solution of (1.2-3) also exists and the problem is

singular, with (A matrix being called "singular A'. Thus, in the following
oxu

study, the column space of A will be dealt with.

Now from (1.2-3) it can be written for a typical row:

al, (X, - dx1) +al; @Yy - dys) +al; 9%y - dz1) =0

(1.2~43)
or, using vector notation
ni, 3X; - ni; dx; = O. (1.2-4b)
In this notation
aﬁ—j _BXJ an[_
nu = a{J] N aXJ = BYJ s 5X1 = Byi (1.2"40)
aid 37, dz4
where, using preliminary coordinates,
Xy = x Y; - Zy — Z
aixj - _J.____L, aij - X — Vi , aij = Ll 4i (1.2"'4(1)
Siy Siy Sij
with
_%_
sy = [(Xy-x,)°+ (YJ_Y1)2+ (ZJ_Z1)2]
and where
3%, = dX, - dX; , Oxi = dx; - dxi. (1.2-4e)

Due to the chosen coordinate system, which is the same for any solution’
X, it must also hold that

dx, =0, dy, =0, dz, =0; dys =



and consequently, using (1.2-1) and (1.2-4e), that
0x; =0, 0yp =0, 3zy = 0; OJyz =0, 0z2 = 03 9z3 = 0. (1.2-5b)

An example of a coefficient matrix A of observation equations such as used
in (1.2-3) is given in Table (1, 2-1);there only the necessary number of observa-

tions is present, i.e., 6 =u. The notation

— X Yy zT
ny = [(aj af) afj]

represents the unit vector in the i-j direction; it was first introduced in (1. 2-4c).
The number of ground stations used in this example is seven and the correspond~
ing necessary number of targets (satellite points) is fifteen. The stations observ-
ing all the targets are numbered as 1, 2, 3; the stations denoted as 7,5, 6 chserve
four targets each; these targets are numbered as ji1 - ji4, jo1 = J2e and ja1 = Jza,
respectively, Station 4 in this particular example is assumed to observe targets
Ja1, Jazs and jua. The coordinate system is defined as before, so that (1.2-5b)

is fulfilled. In the headings of Table (1.2-1), dxp, 9Xs, and dys; pertain to the x
coordinate of station 2, x coordinate of station 3, and y coordinate of station 3
respectively., The notation dgr; is designed to represent three columns for
station i, i.e., 9ox;, Oy, and dz,; the same holds also for 0Xy,, With respect to
the satellite point j,,. If more than a necessary number of observations were
used, the table wouldbe expanded in an analogous manner: for each new station

a three column block dgr, and for each new target a new three column block 3X
would be added; for new observations between existing stations and targets, rows

in the corresponding row block "From i" would be added.

The satellite parameters will be now eliminated using stations 1, 2, 3
for which the relation (1.2-5b) holds. Since 1,2,3 observe all the satellites,

the following equations will hold for any satellite point j :

i:1...a§55XJ+a§'3 BYJ*!*aiJBZJ:O, (12"'63)
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i=2... aéj(BXJ - 5X2)+3}é3 BYJ +a;3 BZJ = O, (12“"6b)

1=3... a3,(0Xy -~ 3%q) + 23y (3Y, - 3yg) + 85,37y = 0 (1. 2-6¢)

Simplifications x;,= y, = z,=0, yz=Zz=0, 2z3=0 due tothe

chosen coordinate system yield in (1. 2-62):

1
aZJ = —-EJ (Xj BXJ + YJ 5Y3)~ (1.2"73.)

Upon multiplication by s;; and sz of (1.2-6a) and (1. 2-6b) and taking the

difference, it follows:

dX
2Ky = (%2 = Xp) . (1. 2-7b)

Similarly for (1.2-6a) and (1.2-6c) it is obtained:

X o X o¥s
3Yy, = =2 (xp - Xj) —F + (xg-X;) —2 + -Y .
3 Ve (X2 1) - (%z = Xy) Va (ya - Yy) Va (1. 2-7¢)
In these equations it is necessary that
Xp # 0, ys #0, Zy # 0 for any j. (1.2-8)

The first two relations were already used in the definition of the coordinate
system; the last one means that the following derivations will hold only if

no satellite is in the plane of the ground stations 1, 2, and 3. Otherwise such
a point could not be determined from stations 1,2, and 3, even if these were
all known; in the linearized form, the point could freely move in the direction
perpendicular to the plane of stations 1, 2, and 3. Upon plugging the expres-
sions (1, 2-7b) and (1.2-7c) into (1.2-7a), it is obtained:

°

1 X3, OXp Y X Y d
azg=-z(xQ-XJ)(XJ-YJ§-:) ~ ——Z—j'(XS—XJ)-;f—-Ej-(ys-YJ);%

(1.2-7a%)

12



The relations (1.2-7a’), (1.2-7b) and (1.2-7c) express the variation of satellite

d d . .
parameters in terms of -a—x)—(a , TXQ , and _y}_’_g_ , and thus make possible their
2 3 3

elimination in (1. 2-4a) for an arbitrary station i. After multiplying (1. 2-4a) by
Sy, then by (-Z,) and carrying out some algebraic operation, the following relation

is obtained for anyj:

Zy(Xy = %)3%y + Zy (Y3 ~y)3y1 + Zy(Zy - 24) 02y *
d X3 o)
(1Y - ¥1Zy) (Xy - Xa) Ei + (24Yy - y4Zy(¥y - YS)‘;%E + (1. 2-9)

X X 0 X
[24(Xy - Yy=2) = Zy(x;y - y1=2) ] (X -~ x0) —2 = 0.
¥s ¥a X2

Similar approach was used in [1], Annex A andin [10] with these twomain dif-
ferences: first, only four ground stations, forming the ground network observing
simultaneously were considered, and second, only six satellite points were
used, which means that no extra observations were considered in that derivation.
The result (1.2-9) for all stations i can be written in a matrix form as
A3X=0. (1.2-10)

A matrix is presented in Table (1.2-2). It is of dimension (0 x 1)

where

0=0-3x (number of all satellite points)

and -
u = u- 3x (number of all satellite points).

What was said for the matrix A and 3X of (1.2-3) applies also for the

matrix A and 3X of (1.2-10). In particular, when dealing with "non-singular A,

only.' trivial solution for oX is possible to fulfill (1.2-10).

The expression A3X =0 (pertaining to ground stations) together with
0Xp
3X*® = S|3x, | where s denotes any satellite point and S is the corresponding

0y

13
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(3 x3) matrix obtained from (1.2-7b), (1.2-7c¢), and (1.2-7a’y were derived from the
= s
equation AoX =0, Therefore, any oX =B§]fulfilling this equation will alsoyield 40X =0,

Thus whenever d3X # 0 fulfills AsX = 0, it must also hold that 3% # 0, sincedX =0
>
wouldimply that |3x, |= 0 and consequently 3X° = 0 using (1.2-7a’) to (1.2-7c)

@5’3
for each j; this, howe;er, would be a contradicfriovniio d3X # 0. Thus 0X # 0,
fulfilling A3X = 0 implies X # 0, fulfilling A3X = 0. Conversely, whenever
oK% # 0 fulfils AoX = 0, it must also hold that 3X # 0 fulfils A3X = 0, since 3X
is a subset of 3X. Clearly, trivial solution for X corresponds to trivial solution
for 3X (due to 3X* = 0), and trivial solution for 3X corresponds to trivial solution

for X (3Xis a subset of X). It can be concluded that whenever A is

singular or non-singular, its corresponding A is also singular or non-singular.
Consequently investigations pertaining to the column space of A will be used rather
than dealing with the column space of A. *

It is noteworthy that'in Table (1.2-1) the satellites observed from stations
4,5,...1 (together with the stations 1,2, 3) may or may not be the same. For
that reason they were denoted as j,j’, j. Neither does their number in different
groups have to be the same. It can be observed that when the mentioned satellite
points are the same in all the groups, it is the case when all ground stations are
observing simultaneously. When none of the satellites in different groups are the
same, it is the case when only four ground stations observe simultaneously (s‘&:aﬁons 1,

2,3, and i, for instance). This occurs in practice with SECOR observations.

* This can also be illustrated by the following argument: If A3X =0
(which followed from A3X = 0) has 3X = 0 as the only possible solution, then all
the ground stations are uniquely determined. But every satellite point was observed
from stations 1,2, 3, and did not lie in a plane with them. Thus these three stations
alone (uniquely determined) would be sufficient for the unique determination of all
the satellites, which would then mean that the whole cluster of points is uniquely
determined.

15




1.3 Range Observational Mode Investigations
with Observing Stations in Plane

The use of range observations when the observing ground stations lie exactly

in 2 plane {s possible whenever A matria is non-singular with the z-coordinates
of all ground stations equal to zero. First,it is necessary to plug for local
coordinates: z, =Zg = ... = 2z, = 0 in the expression for A matrix as seen in
Table (1.2-2). Since the equivalence operations do not alter the rank of a
matrix, it is now possible to divide a row pertaining to jth satellite by

Z, # 0, for all j. Further, each of the last three columns will be multiplied

by -1. Finally, if all the columns are identified by their headings in Table

(1.2-2), these further equivalence operations will be performed:

aXS/YS - axs/Y3"Y4 00Xy = ¥5 OXs — ... Yy OXy,
3Ya/Ys — 3Ya/¥3 =~ V3 dVa - ¥5 0¥s = ... -¥i 3V,
Xz X3 X3
axg/xg-;» axz/xg— (X4=Ya ) 8%y - (X575 ) 0Xg ... = (X~Y; =) 3 Xi.
ya Vs ¥a

The resulting matrix, whose rank is the same as that of K, is denoted as X and
its form is shown in Table (1. 3-1).

If only one quad of stations is observing, e.g. quad consisting of stations
1,2,3,i, all in a plane, then only "station i"" submatrix of X is to be considered.
It is seen that no more than four columns of this submatrix are independent. To
avoid singularity two more coordinates (out of three: x,, X, ys) would have to
be held fixed. If in addition all the satellite points for this quad were lying in
one plane parallel to the plane of ground stations (which could be approximately
fulfilled in practice when the same satellite is observed when passing above the
ground stations), no more than three columns of the submatrix could be indepen-
dent. The columns dz,, 3X3/Vs, O ¥a/Vs, O Xa/Xz would be all constant. To
avoid singularity in this case three more coordinates (out of four: z,, Xz, Xa, Va)
would have to be fixed. An example for avoiding singularity in this case could

be holding of nine coordinate fixed such that the stations 1,2, 3 would be com-
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pletely fixed.

From the above illustrations it is immediately clear that four
ground stations lying in a plane and observing only ranges to satellites can
never form a fundamental network, no matter how many satellite points are
used and what is their distribution. The fact that this particular case (four
ground stations lying in a plane) is singular was also shown in[1], Annex A
and in [10], where only six satellite points were considered.

When more than five ground stations observe ranges to satellites
the system does not have to be singular even if all the stations lie in a plane
as being investigated in this section. The singularity when it does occur can
be conveniently divided into three categories.

1. Matrix X is singular if any block of three consecutive columns
except the last one is singular (i.e. its rank is less than three in this context).
Since these blocks are mutually orthogonal, this is the only way for matrix X
minus the last three columns to be singular. This type of singularity will be
called singularity A).

2. Matrix & is singular if the block consisting of the last three
columns is singular. This type of singularity will be called singularity B).

3. Matrix X is singular if all its columns together are linearly
dependent, in absence of singularity A) or B). This singularity, involving the
last three columns together with the other columns of & will be called global

singularity or singularity C).

1.31 Singularity A)

Three column block for any station (4,5,...1) is singular, i.e. its
rank is less than three, if the determinant of any (3 x 3) submatrix of this
block is equal to zero. Let (X;,Y,7Z,), (Xz,Y2,Z2), (X,Y,Z) denote the
coordinates of the first, second, and any further satellite point respectively
observed by a particular ground station, and(X,y, Z = 0) the coordinates of

this ground station. Then for singularity A) it holds

18



Xl_x Yl"y Zl
XE—X Yz-y Zg = 0- (1. 3".1.)
X -x Y -y Z

This equation represents a surface of the first order in (X,Y,Z), a plane. The
plane passes through satellites 1,2, and the ground station as it is seen by
plugging the coordinates of the above mentioned points for (X,Y,Z). Obviously,
any such three column block is always singular if less than three distinct
satellite points are observed by any ground station. From the above derivation
it follows that such a block may be singular even when more than three satellite
points are present, namely, when they all lie in one plane., This can be also
easily illustrated geometrically. Even if all the targets observed by certain
station i and lying in one plane with it were known, this station could nct be
determined from them. In the linearized from, it could freely move in the
direction perpendicular to the plane of the targets. An illustration of this con-
figuration is presented in Figure 1.

In Appendix 2, Best Fitting Plane, a procedure is outlined in order to
determine effectively how a set of given points is close to a plane, which could
serve to detect the above singularity. The coordinates of a ground station and
of respective satellite points are used to fit a plane by the least squares method
to these points; subsequently, an average distance of these points from the

plane is computed.

1,32 Singularity B)

1,321 General Considerations

The last three column block in & matrix is singular, i.e, its
rank is less than three, if the determinant of any (3 x 3) submatrix of this
block is equal to zevo,; a condition, similar to that for singularity A). Here
again, such two rows that are linearly independent in the three column block
may be held fixed and any row other than these two rows may gradually occupy

the third row's position, thus creating (3 x 3) submatrices. If the determinants
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Plane containing
all targets ob-
served from
station i

Plane of ground stations

P

Figure 1

ILLUSTRATION OF SINGULARITY A): Station i is in the plane of its
observed targets.
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computed for these (3 x 3) submatrices ére all zeroes, then the determinants
of all (3 x 3) submatrices are zero since any row is contained in the row
space of the chosen two rows and so the row space or column space of the
above three column block is two (if all the rows were multiples of each other
then the row or column space of the block would be one).

From Table (1.3-1) it is seen that in the last three columns all the rows
pertaining to one ground station (other than 1,2, 3) are the same. Thus the deter-
minant of a (3 x 3) submatrix is zero whenever any two rows belonging to the
same ground station are used to form such submatrix. In a network consisting
of four ground stations in a plane all three rows in any such submatrix are the
same and in a network consisting of five ground stations in a plane at least two
of the three rows in any such submatrix are the same. Thus not only with four,
but also with five ground stations lying in a plane the problem is always singular,
namely singularity B) occurs.

Having more than five ground stations, all in one plane, singularity B)
occurs only as a special case which will be treated now. First, one row belong—
ing to station 4 and one row belonging to station 5 will be chosen to be the
two fixed rows when forming the (3 x 3) submatrices in the last three column
block, whose determinants will be examined. The third row will be gradually
taken as being the row belonging to any ground station beyond 4 and 5. 1If the
determinants of all such submatrices are zero then singularity B) is taking place,

in which case it holds that

Va (X4—X3) Va(Va—Y3) (Xa-Ya ?‘:) (Xg4~Xz)
Vs(Xs-Xs)  ys(Ve-Va) (x5-ysiy‘j) (Xs=%z) | = 0 (1.3-2)

V(X -%Xs) Y (V-¥a)  (X-y 1;:) (X ~%z)
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where (X,y) are the coordinates of any ground station beyond 4 and 5, the z
coordinates of all the stations being zero,
It can be seen that (1. 3-2) represents an equation of a second order
curve in xy plane. The curve passes through the ground stations 1,2, 3,4, 5,
since when plugging for (x,y) any of (0,9), (Xz,0), (Xa,¥a), (X4 Va)s (Xs,¥s),
the equation (1. 3-2) is satisfied (in the first three cases the third row of the
determinant in (1.3-2) contains zeroes and in the last two cases this row is
equal to the first and second row respectively).
In the above, the assumption was made that there existed two rows in
(1. 3-2) which were linearly independent, taken there as the rows correspond-
ing to ground stations 4 and 5. If these two rows happened to be multiples of
each other, different rows would have to be used, otherwise the determinant
(1.3-2) would always be zero regardless of the third row and so regardless of
the rank of the last three column block in X, This is fulfilled in most practical
cases and so the following only completes the theoretical discussion. The
situation with any two rows in this column block being linearly dependent can
be easily analyzed. If a row in the last three column block of X matrix
corresponding to any station beyond station 4 is linearly dependent on the row

of station 4, then it holds simultaneously that

Va(Xa—%3)  ValYa—Ya)

= 0, (1.3-2a)
V(X - X3) y(y -ys) '
ValXe—X3) (x4—y4253)(x4—x2)
Zj = 0, (1. 3-2b)
¥(X - X3) (x -y =) (X~ %)
Ya
and
Va(Ya—¥a) (&—ygiy{a)(xxrxa
X3 = 0 (1. 3-2¢)
Yy - ya) (X"Y‘;:)(X"Xz)

22



where (x,y) are now the coordinates of any such station. If station 4 lies on a

straight line with stations 1 and 2, i.e., if
Ya T O!

then it is seen that in order to fulfill (1. 3-2a) - (1.3-2c), any station beyond

station 4 must also lie on the same straight line, i.e.,
y=20
must hold (assuming thatno two stations can coincide), This result stipulates

that all stations with exception of station 3 would have to lie in a straight

line, Of the other cases with restricted location of station 4, only
Xgs T X3
can yield meaningful results in order to satisfy (1.3-2a) - (1. 3-2¢), namely

X=X, =X =0, any y

and

i

X=X T Xg T Xp aliy y.

These results again indicate that all stations except one lie in a straight line
(in a specific position). Considering the cases with station 4 in general

position, i.e.,

Y47£09 Y47£YB9 X47£X3,

the following situation is obtained: (1.3-2a) results in a straight line in
general position through station 3 and 4, while (1. 3-2b) and (1. 3-2c¢) represents
each a second order curve (with non-zero coefficient for x°), passing through
stations 1,2, 3, and 4. Both these curves necessarily intersect the above
straight line at two locations, corresponding to station 3 and station 4. For
(x,y) in such locations the equations (1. 3-2a) - (1.3-2¢) would be satisfied;

however, this implies that further stations would coincide with either of
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stations 3, 4, which is not true, Therefore, the only further realistic con-
figuration which would cause linear dependence of any two rows in the last
three column block of X matrix is suchthat each of (1. 3-2b) and (1. 3-2¢)

represents a straight line coinciding with the above line through stations 3

and 4, This can hold only if

Xq 4y3
and
Xa _
X-y = 0,
Ya

which indicates that stations 1,3, and 4 would have to lie in a straight line
which would also contain all stations beyond station 4, Station 2 would be
the only one not lying on this line. Consequently, any two rows in the last
three column block of & matrix would be linearly dependent if and only if
all the stations except one lay in a straight line. Clearly, adding one more
station could not remove singularity B) in such cases, since the above block
would contain at most two independent rows. Therefore, at least two additional
stations would be needed. This can be easily interpreted geometrically, since
by adding one more point to the configuration of a straight line and an isolated
point, one could not avoid having all the points on one second order curve (in
this case degenerated into two lines). Since the cases with all stations except
one lying in a straight line can be immediately detected by inspection, such
configurations (leading to only one independent row in the last three column
block of & matrix) will be always discarded. Consequently, it is assumed that
station 5 exists such that it does not lie in a line with all except one of stations
1,2,3, and 4,

All real solution (x,y) satisfying (1. 3-2) represent the critical loci

leading to singularity B). General equation of second degree has the form:

ax® + bxy + cy® + dx + ey + f = 0. (1. 3-3a)
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a b/2

b2 e (1.3-3b)

Denoting d =

as the determinant of the A matrix presented later in (1.3-5) - (1.3-5Db),

and
a b/2 d/2
A= |b/2 c e/2 (1.3-3c¢)
d/2 e/2 f

as the determinant of the "augmented A matrix' according to 4], p. 352, the
real solutions of (1.3-3a), accordingto 41, p. 353, are presented in

Table (1. 3-2).

Table (1. 3-2)
Representation of Real Solutions for Second Degree Equations in Two Variables

JA) J Description
#0 >0 ellipse
# 0 <0 hyperbola
#0 0 parabola
0 <0 intersecting lines
0 0 parallel lines (distict or
coincidental)

It was shown that the stations 1 through 5 determine the second
degree curve representing the critical loci. This curve can be computed,
drawn, and visual inspection made as to whether all the remaining stations
lie on (or near) it, in which case the singularity (or near-singularity) B)
would occur. This is a more practical procedure than to examine

(1. 3-2) for each station beyond 5 separately. In practical computations
J=0or & =0 would never occur exactly so that a computer program can
be written limited to the determination of an ellipse or hyperbola; the
other cases, above all the intersecting or parallel lines can be detected

beforehand by visual inspection.
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The equation (1.3-2) can be expressed as
2 C+y°B+xy(A —?3 C) + %(-x2C) + y(-%Xa A - yaB + xg—’;ﬁ C) =0 (L 3-4)
3 3

It is easily verified that A = B = C = 0 would occur if and only if the first
two rows of the determinant in (1. 3-2) were linearly dependent, the case which
was treated separately and discarded. The whole equation can be divided by
C, which is non-zero in general, since of the stations 1,2,3, any one can be
chosen as the origin of the local coordinate system and any one as determining
the direction of the x-axis, The coefficients A, B, C in the above equation

are obtained from (1.3-2) as

A = Y4(Y4~Ya) (X575 i)(xs—xa) - ¥s(Y5~Ya) (X4~Ya ?Z)(X‘;"XZ), (1.3-42)
B = ys(Xs5-Xa) (X4"Y4§"33 ) (X4=Xz) = Ya(X4 ~X3) (Xs~Ys ﬁ) (Xs~%2) (1. 3-4b)
C = Yaysl(Xe-%a) (y5-Y3) = (Va~¥3) (Xs5-X3) ] . (1. 3-4c)

The second order equation (1. 3-4) in local coordinates (x,y) can be expressed

in matrix form as

x'Ax +x"a = 0 (1. 3-5)
where ~ -
a1 EZ5F)
A= ) (1. 3-52)
az;  2pz '
with
a1 = 1,
1 A x
4z T qz21 T (E ‘;:)’ (1. 3-5Db)
fpp = =
22 C ]
and
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with

as = xg}-SB A B (1. 3-5d)
¥Ya

while

- :
X = [XJ . (1. 3-5¢e)
y

Since five distinct points are sufficient to determine the equation
of second order curve, A matrix and a vector could be also determined by
fitting second order curve to stations 1 through 5. This is done in Appendix 3
and the same expressions as in (1.3-5b) and (1. 3-5d) are obtained for A, a.

An illustration of singularity B) is presented in Figure 2.

1.322 Computation of Critical Curve,
Practical computations pertaining to the critical curve are made in four steps:

(1) Transformation of the coordinates of all stations and
satellites from the basic coordinate system to which
all the points refer into the local coordinate system.

(2) Computation of the curve in canonical form.

(3) Transformation of all the points of interest from the
canonical to the local coordinate system,

(4) Transformation of these points from the local to the
basic coordinate system. With their aid the critical
curve may be easily drawn and conclusions made as
to the position of the ground stations with respect to it.

For the transformation of coordinates set forth in (1), the following

notations will be introduced:
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X X Targets generally distributed
X
X

Plane of
ground stations

Figure 2

ILLUSTRATION OF SINGULARITY B): Stations 1, 2, 3 observe all targets;
all stations are on a second order curve.
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X = . . . coordinates of a point in the basic coordinate

system; thus in particular

Xo= - . . . coordinates of the origin of the local

coordinate system,

X = © . . . coordinates of a point in the local

coordinate system.
According to (A4-52) through (A4-5c¢) in Appendix 4,
x = P(X - X)), (1.3-6)
where x was identified with X’ and P with R, and where

[ cosa sino

P= 1 " s
L—SIn & cos ¢

(1.3-6a)

o being the angle between the x and X axes, measured counterclockwise
under the assumption that both coordinates systems are right handed.
The origin of the local coordinate system is assumed to coincide with
station 1 and its x-axis to pass through the station 2, giving

cos o= (X - X))/ 8z
and

sina= (Y, - Yg)/ Sz,

where

Si2 = /(Xa=X0)% + (Y2 - To)2.
The matrix equation (1. 3-6) can also be written as

X7 _ reosa -sina ™ MX-X;7

Yy J -sina coso 5 X-Y,J°

determining local coordinates of any point given in the basic coordinate
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system (here capital letters denote stations' coordinates).
Computation of the critical curve in canonical form,such as stipulated
in (2), comprises computation of the parameters of this curve, its explicit

equation in the local coordinate system being given by (1. 3-5), namely,
x'Ax+x'a = 0,

This form coincides with (A4-30) of Appendix 4 with c = 0, due to the fact
that the critical curve passes through the origin of the local coordinate
system (station 1). The procedure to compute the size, shape, center,

and orientation of this curve was outlined in section A4.4 and also used in

practical computations, (The local coordinate system is called in section A4, 4
"original coordinate system'.) In particular, the semi-axes a, a,, and

the kind of second order curve, found there, determine the size and shape

of the critical curve, while x5 and R determine the center and orientation

of the critical curve with respect to the local coordinate system. Assump-
tions made in section A4, 4 excluded special cases when singularity B) is
caused by all stations lying on two straight lines (intersecting or parallel);
these assumptions read as J # 0 and A # 0, with J and A defined in (1. 3-3b)
and (1. 3-3c). Some of the special cases were illustrated separately in
Appendix 5.

The values of X, and R are then used to transform any point on the
critical curve from the canonical to the local coordinate system, as required
by (3). In particular, the points of interest are the center of the curve |
and four "main curve points", identified with the end points of the curve's
axes (major and minor axes for ellipse and transverse and conjugate axes
for hyperbola). In section A4.4, these points in canonical coordinates
are presented in (A4-32). Their transformation into the local coordinate
system is made according to (A4-8) as

X:XO+RX,
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where x’ refers to a coordinate vector in the canonical coordinate system.
Transformation of these (and any other) points from the local to the
basic coordinate system set forth in (4) is then carried out according to

(A4-5a) or (1.3-6), as

X=Xs + Px.

1. 33 Singularity C)

When dealing with singularity C) in a range adjustment problem, also
called global singularity, all of the columns in A matrix (presented in Table
(1.3-1), section 1. 3) are taken into consideration. In the global analysis of the
causes leading to singularity (in this context rank deficiency) of X matrix,
it will have to be assumed that no three column block is singular, Failure to
fulfill this condition can be divided into two groups: first, in which anyone of
the three column blocks except the last one is singular, in section 1. 31
called singularity A), and second, in which the last three column block is
singular, in section 1. 32 called singularity B). Naturally, these two groups
have to be treated separately in order to make the analysis of the global
singularity complete. It was done in sections 1, 31 and 1. 32, although the above
reason for such separate treatments was not given there. Elimination of sin-
gularity A) and singularity B) are necessary conditions for X matrix to be

non-singular. Further necessary conditions are presented in section 1,331,

1.331 Necessary Conditions to Avoid Singularity C).

As seenfrom Table (1,3-1), among all the rows pertaining to observationsfrom
one ground station inmatrix A, atmostfour rows canbe linearly independent. First,
the condition guaranteeing that such a row block has indeed rank four will be formulated.
Obviously, only one non-zero column of the last three column block (or one

non-zero combination of the three columns) isto be considered here, since two
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of these columns can alwaysbe brought to zero by equivalence operations. Con-
sequently, the rank of the following matrix My, corresponding to the kth row block,

will be considered:

er - ¥ Yy - Yk Zy c
M = ‘ : (1.3-7)
X-% Yi-x L c
L i
where ¢ is a constant and
c# 0. (1.3-73)

Using row and column equivalence operations it is seen that
. \ —_
1

My ~

I
1
. . . 1 .
XJ -X; YJ -Y; Zj -Zy1 0
. . . 1 .
.. . |
L J —

It holds that rank My = 4 if and only if rank § = 3. The first two rows in S,

are ggsumed independent (they would be dependent only if the satellite points
1, 2, 3 were lying on a straight line; in this case another row could replace
row two; if no such row existed then all the satellite points observed by station
k would lie on a straight line, rank S, would be one and rank M, two; but then
singularity A) would occur contrary to the necessary assumptions of singularity
A) and singularity B) eliminated). Let X,Y,Z denote coordinates of any satellite
point beyond three observed from the kth ground station. Should the rank S,

be less than three it would have to hold for each such satellite point:
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(X=X Yo-Y, Zo-7
X3 - Xl Yg - Yl Zg - Zl =0, ﬁilw 3"‘8>
X _Xl Y _'Y]_ Z _Zl

This first degree equation in X, Y, Z represents a plane passing through points
X,, Yy, Z,, i=1, 2, 3, i.e. passing through satellite points 1, 2, 3 (if any
of these X;, Y,, Z; are plugged for X, Y, Z, the equation (1. 3-7) is satisfied).
Consequently, the rank of S, is less than three and the rank of M is less than
four if all the satellite points observed from the kth ground station lie in one plane.
Each observing station beyond stations 1,2, 3 contributes with three
columns to matrix X. These three columns are assumed to be independent (due
to singularity A) eliminated). Thus each row block has rank at least three and
at most four. Since X matrix contains three more columns (the last three
columns) corresponding to stations 1,2, 3 (actually only 2 and 3), there must
be at least three such row blocks of rank four in order that X be not necessarily
singular, Otherwise ranks of individual row blocks added together would not
even reach the number of columns in X. Thus, a further necessary condition for
& to be non-singular is that at least three row blocks have rank four. Defining
a set of points which are not all lying in one plane as points "off-plane’, the
above conclusion may be restated as follows: in addition to the assumptions of
singularity A) and singularity B) eliminated a further necessary condition for
% to be non-singular stipulates that at least three ground stations in addition to

stations 1, 2, 3 must observe off-plane targets.

1.332 Necessary and Sufficient Conditions to Avoid Singularity C).

In section 1, 331, the necessary conditions for avoiding singularity C)
were presented. It will be shown that with some further specifications these
are also the necessary and sufficient conditions for non-singular X matrix.

Let the following notations be introduced pertaining to A matrix of Table
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(1,3-1): the columns with headings 3%, dy,, 0% will be denoted respectively
ag (column) vectors v.*, vJ, v, k=4, 5,..., g. The letter s will refer
to the number of ground stations beyond station 3, while g will stand for the
total number of ground stations, namely,

g=s+ 3.

The last three (column) vectors will be denoted as v', v°, v°, respectively.
The condition for singularity of X can be expressed as follows: X is singular
if there exists a set of coefficients,divided into a group containing coefficients
a and a group containing coefficients b, such that this set is not necessarily

a zero set and that the relation
afvivalvi+alvi+t... valvitalvitaivi+ vt +bove+bev® = 0 (1. 3-9)

holds, i.e.,that (1.3-9) is consistent for this set of coefficients. Obviously,

the above system of homogeneous equations can always be made consistent,
namely, when all these coefficients are equal to zero. Thus X is singular if
(1.3-9) can be made consistent with some non-zero coefficients a or b. Other-
wise & is non-singular. It is seen from Table (1.3-1) that X can be divided

into s row blocks, associated with observations from stationk, k=4, 5,...,8.
With exception of the last three columns, the non-zero columns in the kth row
block will be denoted as v, v, and sz. Clearly, these (column) vectors repre-
sent the only non-zero elements in v*, v/, and v (column) vectors, respectively.
Furthermore, the last three columns in this row block can be denoted as

—

1 1 1
feox |1), & x {1}, and £ x |1
: L i

! |
L1 11 1

where fkl, £2, fks are terms appearing in each row of the last three columns of

% tor this rowblock. The system of equations (1. 3-9) is thus composed of

smaller systems, corresponding to the above row blocks, which all have only

34



the b-coefficients in common; (L 3-9) then corresponds to the totality of the

systems such as

1 B 1
~ ~ ~ 1
ar v +a) v+ a) vl by e | baf ' + bafy 1 =0,
1 i_l 1]
k=4,5,...,8,
or 1
s +al W ral v + o 1 = 0, (1.3-10a)
L1
k=4,5, ..., g (1. 3-10b)
where
bif + befid + bafid = c. (1.3-10¢)

Consequently, the system of homogenous equations (1.3-9) can be written as
composed of the systems (1.3-10a), with k and ¢, such as in (1. 3-10b) and
(1. 3-10c), respectively. It has the following form:

~ I~ fas 1
asvst+abvitaivg +Cs H =0 (1.3-11)
£ y:\v’y oz .;l _ '
a'ss+asx+3zs +cg' =0
where
bl.f41 + bsz + bsff = Cq

byfs + bofE+ bsfs = cs

buf, + bof2+ baf® = ¢,
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Necessarily, the system of homogeneous equations (1. 3-9) is consistent for some
set of coefficients a, b, if and only if the systems (1.3-11) and (1. 3-12) are con-
sistent for the same set of coefficients. 1If for any k in (1.3-10a) or (1.3-11)

%5, W, and v¢ were not linearly independent, then there would exist correspond-

ing a-coefficients not all three equal to zero such that
at v ral WraZivk = 0 (1.3-13)

would hold. Accordingly, with all the remaining a-coefficients and all three
b-coefficients equal to zero, or correspondingly with all the terms c equal to
zero, the systems (1.3-11) and (1. 3-12) would be consistent for such a non-
zero set of coefficients and & would be singular. However, these special con-
ditions are assumed to be non-existent due to the necessary conditions regard-

ing singularity A). It then follows from (1.3-10a) and (1. 3-10b) that

X A

a = a) = a7 =0 if andonly ifc, = 0 (1. 3-14)

in order that (1.3-11) be consistent. Thus, ¢, = 0 for any k will guarantee that
all three corresponding a-coefficients are equal to zero. However, even if
this were the only possibility to make the system (1.3-11) consistent, A would
not be necessarily non-singular; namely, if the last three columns of X were
linearly dependent, then by, by, bz not all zero would exist such that the system
(1.3-12) with the terms

Cg = C = ... = ¢ =0 {1.3-15)

would be consistent, Then (1. 3-9) would be fulfilled with not all the coefficients
equal to zero (namely the coefficienis b would be different from zero) and A
would be singular. However, due to the necessary conditions with respect to

singularity B) it holds for all k's that

by = by = by = 0 if and only if|c,| =0 (1.3-16)
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in order that (1.3-12) be consistent. With the causes leading to singularity A)
and singularity B) eliminated.as the necessary conditions for non-singular x
matrix, the following definition can be formulated using (1, 3-14) and (1. 3-16):
X matrix is non-singular if and only if the only c-terms making both (1, 3-11)
and (1. 3-12) consistent are those of (1.3-15), Otherwise X is singular.

As a natural consequence of the above definition, the c-terms which make
(1.3-11) and (1. 3-12) consistent will be analyzed. For any subset of (1.3-11},

such as (1.3-10a) associated with the observations from station k, it holds that

whenever
Nx ~y Nz 1 _
rank (v, v/, %, [11] = 4, < (1.3-172)
1L
then only the trivial solution, i.e.
as = ay) = a’ = ¢ = 0, (1.3-17h)

is possible. Otherwise an infinite number of solutions exists, including the one

of (1.3-17b). The expression (1,3-17a) is true whenever
rank M, = 4 (1. 3-17¢)
where M, is given by (1. 3-7), since the matrix of (1.3-17a) is exactly M,
with
c=1#0,

in accordance with (1.3-7a). The relation (1, 3-17c) holds if and only if the cor-

responding station k observed off-plane targets. Next, the system (l.3-12) will

be written in matrix form as

FB = C,
where
EE A
F=. . . ,
A S A |
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W
[

[bl b2 b3]T9

and

C

I

lca...c 1.
Should (1.3-12) represent a consistent system of equations, it must hold that
rank [FC1= rank F = 3, (1.3-18)

since singularity B) was discarded. Thus the rows of [F C]span a three-dimen-
sional subspace W of V, where V is the space of all 4-vectors. Due to (1.3-18),
three independent rows of F may be found; the same three rows of [ F Cc]

span W, Finding three independent rows of F is equivalent to finding three
stations beyond station 3 which do not all lie on a second order curve together
with stations 1, 2, 3. This may be seen from (1.3-2) where the three rows
inside the determinant, equivalent to the above three rows of ¥, are independent
only if the corresponding stations do not lie on a second order curve with stations
1,2,3. Three or more stations with this property will be said to be off-curve,

or equivalently, it will be stated that singularity B) was removed for these
particular stations, Otherwise the stations will be said to be on-curve. Since
the above three rows of [F C ] span W, then all the elements of C, or all the

c-terms in (1. 3-12),will be necessarily zero if the c-terms in all these three

rows are zero (all c-terms are linear combinations of the above three c-terms
corresponding to three off-curve stations). But these three c-terms will have
to be zero with no other solution possible only if (1,3-17a) holds for the cor-
responding stations, which occurs only when these stations observe the satel-
lite points which are off-plane, as it can be seen from the pertinent conclusion
in section 1,331, Under such conditions, leading to all c-terms being zZero, the
relations (1. 3-14) and (1. 3-16) imply that all a-terms and b-terms must be
zero should (1. 3-11) and (1. 3-12) be consistent. Consequently, these condi-

tions stating that at least three off-curve stations observe off-plane targets
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imply that X is non-singular, provided singularity A) is discarded, and with
this last statement represent the necessary and sufficient conditions for non-
singular X matrix.

The requirement that the above three or more stations be off-curve neces-
sarily implies that singularity B) cannot exist. As a matter of fact, it represents
a stronger statement, which was conveniently worded as eliminating singularity
B§ for these particular stations. On the other hand, if such three or more
stations did not lie off-curve, or if only two stations (they can never lie off-
curve) observed off-plane targets, then the corresponding rows of [FC] would
not span W. This means that when only on-curve stations observed satellite
points which were off-plane, not all the c-terms would have to be zero to make
(1. 3-12) consistent. Only those c-terms would have to be zero, whose rows
would be linear combinations of the above rows, i.e., all the c-terms correspond-
ing to on-curve stations, For instance, suppose that the first two rows of (1.3-12)
are independent with ¢, = ¢cs = 0 as the only possibility and suppose that no further
c-term has this property. Choosing a third independent row, corresponding
now to an off-curve station (which did not observe off-plane targets) and choos-
ing its c-terms different from zero, a unique non-trivial solution for b,, b,, and
b; can be obtained. This will yield uniquely the other c-terms from (1, 3-12);
it is clear that not all c-terms are zero, while the system (1.3-12) is con-

sistent, The non-zero c-terms are exactly those associated with stations off-

curve, The fact that singularity B) for all the stations was discarded did not
help here, since the stations observing off-plane satellites were not themselves
off-curve stations. Furthermore, when the c-terms, different from zero (and
necessarily corresponding to the stations which did not make off-plane observa-
tions) are used in (1, 3-11), a unique non-zero solution can be found for the a-
coefficients in a subsystem of (1.3-11), such as (1.3-10a), corresponding to
any of these c-terms. This is true because for such a subsystem the relation

(1. 3-17a) does not hold: the rank of a matrix such as presented in (1. 3-173a)
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with the last column present cannot be four since the corresponding station did
not make off-plane observations. On the other hand the rank of the same matrix
without the last column is three due to the fact that singularity A) was discarded.
Conseguently, the rank of this matrix is three, the same as the rank of this
matrix augmented by a non-zero constant column Eﬂ, which guarantees a unique
non-zero solution for the three a-coefficients of the subsystem,

In conclusion, necessary and sufficient conditions for & matrix to be non-
singular will be restated: A matrix is non-singular if singularity A) does not
occur and if there exist off-curve stations (necessarily at least three) making
off-plane observations. Otherwise A is singular; in absence of singularity A)
and singularity B) the singularity of X was defined as being singularity C). It
occurs when the stations making off-plane observations are not themselves
off-curve stations. Singularity C) is illustrated in Figure 3.

1.333 Illustration that Discarding of Singularity A) and Singularity C) Yields
Unique Solution in Adjustment,
First of all, singularity B) is discarded whenever singularity C) is

eliminated as pointed out in section 1,332, since this implies that there

exist some stations off-curve and,therefore, all the stations are necessarily
off-curve, Further, the number of observations will be shown to be at least
as large as the number of unknowns in an adjustment. Stations 1, 2, 3 are
always assumed to observe all the satellite points. Due to the removal of
singularity C), there are at least three more stations observing at least four
satellite points each (less than four satellite points could always form a plane).
Due to the removal of singularity A), all the remaining stations observe at
least three satellite points each (less than three satellite points could always
lie in a plane with the observing station).

Suppose there are g ground stations, of which three observe all the satellite
points and three observe at least four satellite points each, thus making at

least twelve observations. Further, suppose there are s satellite points. The
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Figure 3
ILLUSTRATION OF SINGULARITY C): Stations 1, 2, 3 observe all targets;

all stations observing off-plane targets are on a second order curve with
stations 1, 2, 3.
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number of unknowns in the whole system (three per stations or satellite point,

minus six unknowns representing constraints or removed parameters) is equal to
3g + 3s - 6.

The number of observations in the whole system is composed of the following

groups:
3s ... due to stations 1, 2, 3 observing all satellite points
at least 12 ... due to three further stations observing at least four
satellite points each
and
at least (g-6)3 ... due to the rest of stations observing at least three

satellite points each,
The total of all the observations is then at least
3g + 3s - 6,

which is as many as there are unknown parameters; this proves the asserted
statement,

Whenever the words "at least” do not apply, the system has exactly the
same number of unknowns as there are observations and a unique solution is
possible without an adjustment.

It is clear that if singularity A) and singularity C) (consequently also singu-
larity B)) are discarded for a network of six ground stations, the network will |

be non-singular no matter how many ground stations and corresponding satellites
are added to it, provided that singularity A) is eliminated also for each of those
new stations. This follows from the fact that all the c-terms are zeroes (i.e.,
also those corresponding to the new stations since all the b-terms were zeroes)
and that the a-terms for the new stations must then also be zeroes due to (1. 3-14),
It can be easily visualized in the following way: in a well-determined network
of six ground stations, any number of satellites not lying in the plane of the

ground stations can be determined using observations from any three stations
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(here 1,2,3). Any new station, co-observing these satellites, can be determined
from them, provided it does not lie in one plane with them. But this condition is
exactly that of singularity A) eliminated (for any such new station), which is there-
fore a necessary and sufficient condition for expanding of non-singular range net-

works beyond the non-singular networks of six ground stations.

1.34 Critical Configurations if All Ground Stations Co-observe.

When all stations observe all targets, any three stations can be considered
to be stations 1,2, and 3, used in previous derivations. For this reason
singularity A) loses its original meaning: if all the targets lie in a plane
through a certain ground station, then such a station can be taken for instance
as station 1; with such numbering of stations singularity A) does not occur.
This can be seen from section 1, 31 where it was shown that singularity A)
occurs if all satellite points observed by a particular ground station beyond
stations 1, 2, 3, lie in a plane containing that ground station; if it contains
any of stations 1, 2, 3, instead, singularity A) does not occur. Neverthaless,
the above configuration results in a singular network, since it is a special
case of singularity C) described below.

Singularity A) could occur in one case only, namely if all targets lay in
a straight line. Planes through such targets would contain any ground station,
This, however, is also a special case of singularity C) described below.

When all stations co-observe, singularity C) could occur only in two
instances as follows:

(a) If the targets are not all lying in one plane, all stations
would have to be on one second order curve in order
that singularity C) occur. This cooresponds to singularity B)
of section 1. 32. |

(b) Ifthe stations are not all lying on one second order curve,

all targets would have to be in one plane for singularity C)
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to occur. The distribution of targets in this plane is
irrelevant, As a special case, such a plane would pass
through a certain station. When all targets lie in a straight
line, which is another special case, this type of singularity
always occurs.

[llustrations of singularity C) for parts (a) and (b) appear in Figures 4 and 5,

respectively,
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ILLUSTRATION OF SINGULARITY C): All stations observe all targets;
all stations are on a second order curve.
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ILLUSTRATION OF SINGULARITY C): All stations observe all targets;
all targets are in a plane.
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1.4 Principle of Replacing of Stations

In the last sections at least three ground stations were treated as observing
distances to all the satellite points, All the derivations presented there are
naturally valid when all the ground stations in a network observe all the targets
(in this sense "observe' means strictly ""observe distances'). This would be
an ideal way of observing range networks, based on simultaneous or quasi-
simultaneous observations from all or most of the ground stations. The latter
mode of quasi-simultaneous ranges would involve precise timing and such an
interpolation procedure as to yield simultaneous observations for the range
adjustment. When such an observational mode realizes, the analysis treating
three ground stations as observing all the targets will then be sufficient and
complete. However, the data presently available is not of this nature. A great
number of range observations have been made using the SECOR observational
mode, when only four ground stations are observing simultaneously. Even in
this case it would be possible to have three stations observing all the targets,
while the fourth station would be moving. In practice, however, even if networks
extend to relatively small areas, all the stations are gradually displaced and
occupy new positions in a fashion called "leapfrogging'. If this is the case,
no three stations observe all the satellite points in general. Tt is then of
interest to analyse the critical configurations for this new procedure in a way
similar to that used in the previous sections.

To procede with such an analysis as clearly as possible certain notations
for groups of satellite points will be introduced. The ground stations (considered
again as lying all in one plane) will be grouped by four, which corresponds to
"quads" arising when the SECOR observations are used. Any satellite group will
be represented by the letter j subscripted by the number (or letter) of a ground
station which does not appear in any other quad or which observes this group for
the first time. Thus the quads consisting of ground stations 1,2, 3,4, then 1, 2,

3,k, and 1, 2,k, s are said to observe satellite groups j,, j., and j, respectively.
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Each station of one quad is assumed to observe each satellite in the correspond-
ing group, Theoretically, some or all of the satellite groups could coincide,
i, e., contain the same targets, which would happen if more than four stations
could make simultaneous observations. This would not affect the derivations
at all, since the coordinates of all the targets are eliminated and expressed in
terms of the observing stations. In the above illustration, station k effectively
replaced station 3 in the observations of j,, which were thus made from stations
1,2,k,and s. This is the reason why such a procedure is referred to as ''replac-
ing of stations ", Station k will be considered throughout as performing the
first replacement. The stations following station k will be all denoted as "s-
stations' even if their number is more than one, in which case they will be
distinguished by primes: s', s! ete. The corresponding satellite groups will be
then j,/, jJ, etc.

Replacing of stations will be carried out on three levels, according
to the number of replacements. One replacement will be analyzed in section 1.41,
which will be the most detailed of the sections dealing with replacements; two
replacements will be treated in secﬁon 1.42, and more replacements in section
1.43.

When dealing with one replacement, the observing stations (quads) and the

corresponding satellite groups can be conveniently arranged in the following way:

1 2 3 4 i,

LI
3s’

j//
8

N

2
2
2

CROOR W e
m\

where the dots express the possibility of more quads present with the first three
stations the same as in the preceding quad. Thus, one or more quads "i'" could

be introduced between the quads of station 4 and station k, namely:
1 2 3 i Iy
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When two replacements are taking place, then one s-station replaces station 2
in addition to station 3 having been replaced by station k. This s-station will be

denoted as s’. A similar pattern will arise in this case:

1 2 3 4

-
[\
LW s e
=
=

where the dots have the same interpretation as in the previous part. Further

replacements can be carried out in an analogous manner.

1,41 One Replacement: Station 3 Replaced by Station k.

Up to and including station k, the elimination of the parameters X, 3Y, 3%,
associated with the satellite points can be done in the same manner as presented
in section 1,2, With the same definition of the coordinate system, the parameters
for each target in j, through j, can be eliminated using observations from stations
1,2, 3, which lead to the equations (1.2-6a) - (1.2-6¢) in section 1.2. These
three equations after multiplying each of them by s,; (distance ground-satellite)

can be expressed in a matrix form as

X, Y, Z,| [oX] 0
Xy-X2 Yy, Zy| |3Y, = (Xy-Xz) 0%z (1,4-1)
| Xs%a Yy-ys Zy| |37 (Xy=Xg) O%s + (Y;-V3) 373

where j stands for any satellite point of j, through j,. The solution using the
matrices is equivalent to that presented in section 1.2 and gives 39X, 3Y;, and
dZ, such as found in (1. 2-7b), (1.2-7c), and (1. 2-7a". The determinant of the
(3 x 3) matrix in (1.4-1) can be expressed as D = Z;Xzy,, giving raise tothe con-

ditions
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XQ#Oa YS7£0, Zj #O$ (1'4_2)

already discussed in section 1.2. When the results for 9X,, 3Y,, 3Z, are
substituted for in (1.2-4a) associated with the observations from "i-stations'
{i can be any station between 4 and k inclusively), then the equation (1.2-9) is
obtained. Equations of this type were used to form A matrix, presented in
Table (L.2-2),

Elimination of the parameters associated with the satellite group(s) j, will
be done using stations 1, 2,k, co-observing with station(s) s. The observations
from stations 1 and2lead to the same two equations for j, as expressed in the
first two lines of (1.4-1). For the observations from station k it holds similarly
that

(X3 7% (0% 70%c) + (YY) (0¥ ~0¥k) + (2 7 %) (9% 70 %) = 0.
In the matrix form the three equations can be written as

Xja YJs st aXJs 0
XJ ;Xg YJS st aYJ5 = (Xj S—Xg)aXQ .(1. 4‘3)
Xy~ % Yy Ve Zysne| |04y, _{XJ TX )% (Y V)oY + (ZJ;Zk)BZE

The determinant of the (3 x 3) matrix in the above expression is given by

D = X2(Vk 2y, = % Yy,)s (1.4-4)
which is the same as
~Xn 0 0
D= -I%-%X % 7 | . (1.4-5)
Xjo~%e Y, Zy,

This form can be obtained also upon using the equivalence operations on the
matrix in (1.4-3), If the determinant in (1.4-5) is equal to zero, then stations 1,
2.k, and the point(s) of j,, with the coordinates (X,,,Y;, Z,,), all lie in a plane.
Consequently, the condition for (1.4-3) to have a unique solution for 0Xy,, 8Y,,,

0Zy, with respect to any target in j, is that none of the points in j, lies in a plane
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with stations 1, 2, and K. The solution of (1.4-3) with ground stations in general

configuration (not necessarily in one plane) is:
Job¢

3K, = (xe-X; )2 (1.4-63)
X2

Job.¢
RCEIEER P NS ARE

Y, =—/——
I Velyo Yy L

+Zy (=Y )% + Zy (Z-Z;,) O ] (1. 4-6b)

OX
32, = 50 7Y ) e ) B - Y (oK 0% -

Velyso Yy o
= Yy (yx-Y,,)0¥k - Yy (=—Zy,) 0z ] . (1.4-6c)
When these values are substituted in the equation for observations from station(s)

s, i.e., in
(Xys7Xs) (0Ky,=0%,) + (Y=Y e)(0Y,-0Ys) T (Z4,70%:)(0Zy,-0Zs) = O,
then the following expression is obtained:
| (VeZy 2 Yy )Xy, ~%:)0%s + (i Zy =2 Yy ) (Y3,~Ye)OY s + (VxZy =B Yy N2y, ~2s)07, —
(V52526 Y 3 )Xy m%)0% — (V62yy~Zs Yy )Yy =¥i)Vk = (V6225 V3 ) (23~ %)0% -

OX,
~[Xy (Y smViZs) + Yy (R Zsm7cX,) + ZJS(Ysz'xkys)j(st_XE)_;: = 0. (1.4-7)

Using equations of the type (1.2-9) for i-stations and of the type (1.4-7) for s~
station(s), A matrix for one replacement with the ground stations generally dis-
tributed can be obtained, such as presehted in Table (1.4-1). If there are more
than one s-station, the table can be easily expanded, using the same type of
terms for any further s-stations; for each such additional station three columns
and as many rows as the number of targets observed by it would have to be
added. The dots in each row block of Table (1.4-1) and any further table indicate
that the same rows figure in the whole row block with the targets' coordinates

as the only changing elements in them; if there are any columns in which these
coordinates do not figure, then in such columns the elements do not change within

the same row block,
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When dealing with ground stations which are all lying in one plane, the
z-coordinate for any station is set to zero and A matrix becomes considerably

simplified. Its determinant then becomes, upon considering (1.4-3):
D = X2 ¥ Zy,,
which means that in addition to the conditions in (1.4-2),
Ve 70, Zy, #0 (1.4-8)

also has to hold. Since it is the rank of A which is of interest as it was also the
case in the previous sections, certain equivalence operations will be performed
to further simplify A matrix. If there were more than one s-station, they would
be treated the same way (e. g., 0% — 0% +'}X’: ox, would become 0% —» oxg +

-~

/ H"

+§‘- o%x,’ +-§‘— 3xy + ¢+, ete.). The equivalence operations with respect to A
k k

matrix of Table (1.4-1) are the following:

(1) Divide each row by the corresponding Z, # 0.
(2) Multiply each of the last three columns by -1,

(3) Perform on the three column block of station k:

3%y D+ DX, IV By TLE By, d7cd D7 FAE Bz,
e Yx R4

(4) Perform on the last three column block:

X5  OXa o) o)

ys% Ya - Y45X4" et _YRBXK’ ;iaﬁ-f _Y4BY4—"' —YKayka
Jo). ¢ oX x X X =

208 5228 —(X4~'Y4"‘a) 5X4— ... ._(Xk_yk_a) %, _ XXV 3%,
X2 X2 N Vs k

(5) Divide each of the rows "From s' by y, # 0.

(6) Perform further on the last column:

OXz 5 O9Xp , X3 OXj
Xz X2 Vs ¥s

The matrix thus obtained is called X matrix with one replacement and with
ground stations lying in one plane; it is presented in Table (1.4-2). There appear

two s-stations in this table, denoted as s’ and &’. At this point some notations
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will be introduced in accordance with the previous sections; they will mainly
consist of the f-terms from the last three column block of K matrix and some

P / /1t .
new terms (p-terms), arising from the presence of s and s stations:

X
5 = Ya(Xe-%a), 2= YalVa-ya), 2= x4(x4-Xz)-y4'§:(Xs-Xa)

. . . <
fkl = Vi (X ~Xa), ﬁf = Ve (Ye-¥a)s fka = Xk(Xk‘Xz)“YR_y:(Xa"XE)

(1.4-9)
fsl/ = YSI(XSI—Xk)a ffl = Ys/(YS/"Yk)’ f? = Xs/(XS/”XE)_yS/-?: (Xk_xz)
ft” =y s//(Xs//_Xk ) H f?/ =y s”(y =Yk ) s fi” = Xs”(Xs”‘Xz)‘Y Sﬂﬁ (Xk “Xz)
1 1
17 __._._fl/ 2, — _.._fa/
De Vi s Ps Y, 2
(1.4-10)
1, . L1 a 2 _ 1
py = -1 py = -3

In the analysis of the rank of A matrix the necessary conditions for A to be
non-singular will be presented first. The above notations and earlier notations
from section 1. 332 will be used in a similar approach as in that section. This
means that when all the a-coefficients and b-coefficients have to be zero in
order that the systems associated with X matrix and denoted as (1.4-11) and
(1.4-11a) be consistent, then X will be said to be non-singular. These two
systems are presented in Table (1.4-3)., The systems (1.4-11) and (1.4-11a;}
can be also imagined in a matrix form which is helpful for certain rank consider-
ations. When the a-terms and c-terms are arranged in a column vector, then
the system (1.4-11) is arrived at by pre-multiplying of this vector by what is
said to be the "matrix of the system (1.4-11)", or the "matrix of (1.4-11)".
Similarly, with the b-terms arranged in a column vector, the "matrix of (1.4-11a)"

will have the form
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fr £2 £

F = ﬁ.} f;f f;f’ ; (1.4-12)
fsl/ ff/ ff/
flé// fiy/ f'i//—

For stations 4 through k, the corresponding rows in F have the same form

as the same rows in the last three column block of X matrix with three stations
observing all the targets (presented in Table (1. 3-1)}, except that to the third
column the ';Ej -multiple of the first column has been added. Therefore, a row
corresponding to any station beyond station 4 up to and including station k
would be linearly dependent on the row of station 4 under exactly the same con-
ditions as presented in section 1,321, namely, if that station lay in a straight
line with all except one of stations 1,2,3, and 4. When the c-terms from

(1.4-11a) are substituted into (1.4-11) this system now contains the

full set of a-terms and b-terms and wil be called "full system of

(1.4-11)", or "full system". Its corresponding matrix is exactly X matrix.
However, it is easier to work with X matrix with the notations of (1.4-11) and
(1.4-11a), i.e., in terms of the full system, taking advantage of the abbreviated
notations., In this context it will be preferable to call X matrix as "full matrix"
associated with the full system. The necessary conditions for the full matrix to
be non-singular will be divided into two principle groups: one dealing with its
rwo blocks and called "row conditions", and the other dealing with its three
column blocks and called "column conditions'. The latter group will be sub-
divided into two parts: conditions necessary to prevent signularity of any of the
three column blocks except the last one, i.e.,to prevent singularity A), and
conditions necessary to prevent singularity of the last three column block, i.e.,
to prevent singularity B). With all the notations and definitions introduced, the
above necessary conditions can be systematically investigated.

When the row conditions are to be examined, it has to be taken into con-
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sideration that no row block in the matrix of (1.4-11) can have higher rank than
four. Assuming that each row block there has the rank equal to at least three,
it is clear that at least three row blocks in the matrix of (1.4-11) or in the full
matrix have to have the rank equal to four. Otherwise the sum of the row ranks
would not even reach the number of columns in the full matrix, since each row
block introduces three new columns in the left-hand part of & matrix which does
not include the last three column block (in (1.4-11) this part and the last three
column block are separated by a vertical dotted line), In other words, the row
conditions imply that at least three quads must observe their targets off-plane
when the terminology of section 1, 332 is used and when the expréssion (1.3-172a)
with the text below it in the same section is considered.

When analyzing the column conditions, singularity A) will be examined first,
Upon considering A matrix of Table (1.4-1), it is clear that singularity A)

occurs for any distribution of ground stations whenever it holds that
Xi1-% Yi-% ZIi-xn
Xe-% Yo-¥ Zo-=% =0
X-x% Y-w Z-zx

where (X1,%,74) and (Xp, Yg, Z3) are taken as denoting the first two targets in j;
{(X,Y,Z) denotes any further target in j or any target in j,. The above equation
expresses any point (X,Y,Z) as lying in the plane through the first two targets

in j. and station k., This result indicates that singularity A) occurs whenever all
the targets (in one satellite group or more) observed by one station lie in the
plane containing this station regardless of the distribution of ground stations.
Singularity A) caused by such a distribution of targets will be sometimes referred
to as "general singularity A)". Next, ground stations are assumed to be in the
plane z = 0,

Considering the matrix of (1.4-11), it is evident that singularity A) for any
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station except station k occurs under the circumstances specified in section 1. 31,
i. e., when all the satellite points in any of j, (except j) or j, lie in a plane through
corresponding stations i or s. Singularity A) for the three column block of
station k can happen only if, in addition to all satellite points of j lying in one
plane through, in such case called "plane 7" (which expresses the condition

(1.3-1) in section 1. 31), the following relation also holds:

X-% Y1-% 74
><2"'Xk Yg_yk Zg = 0, (1,@”13}

Ps pe 0

Here (Xy,Y;, Z1) and (X, Y2, Zz)denote again the coordinates of the firsttwo targets in
i, namely jkl and koo Inm the present case, (1.4-13) would hold with the third row
pertaining to either s’ or &', When the coordinates of s’ or & are denoted as

variables x and y (the z coordinate being zero), then (1.4-13) holds when either
y=0, (1.4-133)

or
X1-% Yi-% Zy
Xo-% Yao-V Zzi = 0 (1.4-13b)
X =% ¥V -% 0
is fulfilled. The equation (1.4-13b) expresses the fact that the variable point
(X,¥,2) lies in a plane with the points Jeys jkz’ and k, subject to the condition
z =1z =0, Butthis implies that the corresponding station s’ or &’ lies on a
straight line denoted by the letter "4", which is generated by two intersecting planes:
plane 7 and the plane of ground stations (i.e., plane z = 0), It will be of interest to

compute the direction of the line £ , passing necessarily through station k. From

the general equation of a straight line,

ax + by + ¢ = 0,
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its direction, given by the angle o (measured from the positive direction of the

x-axis), can be computed from the formula

tj o = ——%-.
b
Thus, if
ay =% (Za- 0) + 21X - X1 Z; (1.4-14a)
and
ay = Ve (Z2 - Z1) + 21 Yz - Y1 Zg, (1.4-14Db)

then (1,4-13b) can be written as

X8y - ¥a, - (X8 ~Yxag) = 0, (1.4-14c)

from which

tjq = —2%, 1.4-14d
j o ( )

Tt can be summarized that singularity A) for station k can occur only if all satellite
points observed by it (here targets of j and j,) are in 7 (plane through station k),
called also general singularity A), or if all targets of j are in 7w and each of the
s-stations is fulfilling either (1.4-13a) or (1.4-13b), i.e., if it is lying either on
the x~-axis of the local coordinate system (line connecting stations 1 and 2) or

on 4 (line of intersection between 7 and the plane of ground stations).

Singularity B) arises when any (3 x 3) submatrix of F, given by (1.4-12),
is singular. Then any row vector in that matrix would have to be a linear com-
bination of its two chosen vectors (here the vectors corresponding to stations 4
and k), i.e., it would have to lie in the subspace V spanned by those two row
vectors:

PO A

Vo~ . (1.4-15)

60



The two rows which span V are assumed to be independent. This is always
true unless station k is in a straight line with all except one of stations 1,2, 3,
and 4, as it was evidenced following (1.4-12). Such special configurations are

assumed non-existent. Thus, for any station i it would have to hold that

£ £2 £
£ 2 £ | =0, (1.4-186)
T C O

which represents a second order curve for station i (i.e., in Xy, y;). This curve

can in general be specified also by finding five points through which it passes.

As it is evident from the relations in (1. 4-9),

fi = f2 = £2 = 0, whenever i=1,2, or 3; (1.4-16a)
further,
L f2 £2] = M8 £2 £2] if i=4, (1. 4-16b)
and
| fr £2 €21 = [ £2 £2) if i=k (1.4-16¢)

From here it is evident that the second order curve for station i, expressed by
(1.4-16), would have to pass through the stations 1,2,3,4,k., This can also be
seen from section 1. 32 where station 5 was used rather than station k., Further,
for any station s it would have to hold that
fi &7t
£ £2 £2 | = o0, (1.4-17)
fr  £2 f£3
which now represents a second order curve for station(s) s (in the present case

it would have to hold for stations s’ and ). With the simplifications

£ £2 £2] =f,, etc.,
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it again follows from (1.4-9) that

f, = 0, whenever s =1,2,k; (1.4-173)
further,
f, = af, a=-22 if s=3, (1.4-17b)
Yx
and
f,=f,+bf, b= - a}%“‘ if s =4. (1.4-17c)
k

Thus the second order curve for station(s) s, expressed by (1.4-17), also passes
through stations 1,2,3,4,k. Whether considering (1.4-16) or (1.4-17), the co-
efficients in the equation of second degree never all vanished; this would happen
if and only if V, of (1.4-15) were of dimension one, similar to section 1.321.
However, such cases were assumed non-existent, as mentioned following (1.4-15),
Counsequently, singularity B) occurs when all the stations lie on one second order
curve, which is the same conclusion as the one reached in section 1.32 when three
‘ground stations were considered tobe observing all the targets. A similar definition
as in section 1,332 can be made now: any stations lying on a second order curve
passing through stations 1,2, 3,4,k are said to be "on-curve'" stations, while
otherwise they are called "off-curve'' stations.

According to the earlier sections, when & matrix is singular in absence of
singularity A) and singularity B), then singularity C) is said to have occurred.
The necessary conditions to avoid singularity C) are the row conditions described
earlier. They correspond to the necessary conditions of section 1,331 with
three stations considered observing all the targets. Next, the sufficient condi-
tions to avoid singularity C) (or global singularity) will be examined. Subsequently,
the conclusions about singularity and non-singularity of & matrix will be reached.
Since such a discussion is fairly complex, it will be divided into parts, accord-
ing to certain properties of the group j. First of all, it will be assumed through~

out that the group j, contains off-plane satellite points. Otherwise this group
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(with singularity A) discarded) could offer no help in analyzing the singularity of
X. This group together with station 4 could then be completely disregarded and
deleted from X matrix. If this "new" A& matrix were non-singular, the observa-
tions from 1, 2, 3 would determine the targets in j, (Z # 0) and station 4 could in
turn be uniquely determined from j,, which is possible in absence of singularity
A). But stations 1,2,k in this new X matrix could be considered as observing
all the targets and the problem would thus be reduced to the one delt with in the
previous sections, Similar argument would hold for two or more replacements,
if j, did not contain off-plane targets, the problem with two replacements would
be essentially reduced to the problem with one replacement, etc. Consequently,
the group j, will be considered off-plane not only in this section, but also in

all sections dealing with replacements of stations., Next, two basic possibilities

can arise with respect to the group j:

(1) j contains off-plane satellite targets, which is of
practical importance and will be analyzed in section 1,411;

{2) } contains in-plane satellites only; this problem, rather
of academic interest, is presented for the sake of completeness in
section 1.412 and summarized in section 1,431, It can be further
subdivided into the case when all the targets in j, lie in a plane in
general position and the case when these targets lie in a plane which
happens to pass through station k, i.e. ,V in the plane 7 (see earlier
notation), From the general point of view, nothing essential is
lost if the part of section 1. 412, starting with case (a) and continuing
with other rather special cases and lenthy derivations, is skipped;

all the results and conclusions of this section are listed in section

1,413,

1.411 Group j Considered as "Off-Plane Targets".

Since singularity A) for station k as well as for station 4 is automatically
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discarded, the remaining necessary conditions are: avoiding singularity A)
for the other stations (i.e., no corresponding satellite group should be in plane
with such stations), avoiding singularity B) (i. e., the ground stations should
not be all on one second order curve), and presence of at least one more quad

observing off-plane targets. Since
~ e~ 1
rank I:ka’ kas sza . ] = 41,

it holds that

Similarly,
ag = a4 = a4 = ¢y = 0.

The remaining part of the system (1.4-11) can be written as

~ ~ ~, 1
a;:"VJ;"‘*‘ ai/VJ;/+ a:lvgl + ¢, ; = 0
1
a:// VJ;” + asll V-Z /7 4 a:// vz// + Csl : — O
1

where the dots can represent row blocks for any number of i stations. For
the remaining a-coefficients to be zero it is necessary that all the remaining
c~coefficients be zero, However, not all the stations associated with the above
sy stem need observe their targets off-plane. If one of them, such that its corre-
gponding row in F matrix of (1.4-12) is independent of the rows f, and f, ob-
serves off-plane targets, the corresponding c-term is brought to zero (besides

¢, and ¢). But then the only solution of (1.4-113) is
bl = bE = bs = 0’

and consequently all the c-terms are necessarily zero. Any station having the
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above property is clearly an off-curve station. Since singularity B) has been
discarded, such a station must exist and the discussion is complete. As a
conclusion, in this section the necessary and sufficient conditions for & matrix
being not singular are: elimination of singularity A) for all the other stations
(besides stations 4 and k), and the property, that at least one of those stations

is off-curve and observes off-plane targets at the same time.

1.412 Group j Considered as "In-Plane Targets''.
Like in all examined cases, due to the group j, containing off-plane targets,
it holds that
ay = ay = aj = 0. (1.4-18)

For the following analysis it will be assumed that
fi #0, i.e., ya # 0, X, # Xa. (1.4-19)
Due to (1.4-18), one b-term can be eliminated from the first row of (1.4-11a); it

is chosen to be the b; term, namely

f2 3
by = "f'z bz ‘% b, (1.4-20)

for which the assumption (1.4-19) was needed. Otherwise, a different elimination

procedure would have to be used. Next, the full system can be rewritten in the

form
£ ~x . ~ ! /1] ”_q
a v toad Wt ot v I +beqi|:| +bagf || =0
I 1
l (1.4-21)
[ | — -
1} 1 ~ ~ ~ 1] 1
wotltlearozlle 0 afreamre e | onall onat|l <
| . B
1 1 l |1 |1

where the dots make allowance for some i~stations, and where several s-stations

can appear (here s’, §'). In the above, the following notations have been made:
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2
a9 = B, g0 -
fa
lf2 3
q;? = fsz-fsﬁ’ s =
4

f3

3 124

fk 3 fl

4

£3 (1. 4-22)
1 4

3—-
£- gt

The necessary row conditions for the matrix of (1. 4-21) to be non-singular

are such that at least two row blocks (including those for i stations, if present)

have the rank equal to four, while the others have the rank of at least three;

otherwise the row ranks would not even add up to reach the number of columns.

Consequently, at least two stations besides station 4 have to observe off-plane

targets,

The column conditions with respect to singularity A) are the same as those

presented in the more general section 1. 41,

(They are automatically fulfilled

for station 4.) In the analysis of singularity B), the last two columns in the matrix

of (1.4-21) will be considered. They would have rank less than two if the relations

ka = Cka
a4 = cq’
held, together with
qf = cqf

if some i stations were also present.

In the case of

according to (1.4-23).
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(1.4-23)

(1.4-23a)

(1.4-242)

(1.4-24b)

The condition (1.4-24a) leads to



(Xe = Xa{Vk —V3) = (Y2~ ¥a) (X - Xa), (1.4-25a)

implying that stations 3,4 and k are lying on a straight line. The condition

g’ = 0 leads to the equation of a second order curve in (%, y) = X',
x'Ax tx'a = 0, (1.4-25D)

Denoting ay; as the ijth element of the (2 x 2) matrix A and a, as the ith element

of the 2-(column) vector a, it holds that

a; = 1,
1 £2
A2~ dgy T Y fi',
4
322—0’
a = —Xp,

a = '}% (%, - Xp - -&(XE~X2)],
r’y y
‘The above curve is a hyperbola, passing through stations 1, 2, 3,4 (if the coordi-
nates of those stations are substituted for the coordinates of station k, the
equation (1.4-25b) is fulfilled); it will be called a "'special hyperbola. Should
q,° = 0 and q,° = 0 hold simultaneously, station k would have to lie on the inter-
section of the line given by (1.4-25a) and of the special hyperbola, which would
constraint the location ofk to at most two isolated points. Throughout in this study, the
policy will be accepted to discard all cases when the location of any station or
satellite point is restricted to some isolated points. Thus, critical configura-
tions consisting of straight lines, curves, and later surfaces will be examined,
with little attention paid to some isolated singularity, even though it may be
easy to compute it; in many instances, existence of such isolated points will
be only mentioned.
With the case (1.4-24b) discarded, the constant ¢ can be expressed from

(1.4-23) as
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In presence of station(s) i, the equation (1.4-23a) yields:
E2E2- 269 8 + (& -7 + (L 87-126) 12 = o, (1.4-262)

which gives rise to a second order curve for station i. Upon using (1. 4-16a)-
(1.4-16¢), it is seen that this second order curve passes through stations 1,2, 3, 4,
and k. For any station s (here s’ and §", the relations (1.4-23) yield
(2L - L2801 + (& -L D17 + (L £2-£26) 10 = o, (1. 4-26b)
giving rise to second order curves for stations s’ and s. The form of this equation
closely resembles (1.4-26a). Both equations (1.4-26a) and (1.4-26b) would have
all the coefficients of f; or f, equal to zero under exactly the same conditions
which lead to V3 of (1.4-15) having dimension one. Such cases were assumed
non-existent. Upon using (1.4-17a) - (1.4-17c), this equation is satisfied
and the second order curve for any s stations is seen to pass through
stations 1,2, 3,4, and k as well. Thus, the same conclusion is reached with
respect to singularity B) as in the more general section 1.41. In other words,
singularity B) occurs when there exist no off-curve stations.

As stated in section 1.41, singularity C) has to be examined in order to find
the sufficient conditions for non-singular X matrix. With station j, observing
always off-plane targets and station k taken in this section as observing in-plane
targets, three basic cases will be examined. They will be called:

Case (a), when no station i beyond station 4 observes off-plane
targets; thus at least two s-stations must observe off-plane
targets to fulfil the necessary conditions.

Case (b), when one station i observes off-plane targets; thus
at least one s-station is required to observe off-plane targets

in order to fulfil the necessary conditions,
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Case (c), when two stations i observe off-plane targets, i.e.,

when three off-plane satellite groups are observed from stations

preceding station k; under certain assumptions, these three groups

can prove to fulfill not only the necessary, but also the sufficient

conditions for non-singular .
Furthermore, each of these three cases can be further subdivided into two parts,
one, in which the targets in j, lie in a plane in general position and the other,
in which this plane passes through. station k, i, e., itisthe plane w. This subdivision
was already mentioned at the end of section 1,41, The first part will be givén
number "1" and the second number 2", so that at certain point the notations
case (al), case (a2), etc., will appear. As stated earlier, the rest of this section
can be skipped without loss of generality; it is summarized in the following

secion 1,413,

Case(a). Due to the necessary conditions,

1
rank {ve', ve, Vi, |1 | ] = 4 (1.4-27)

has to hold for at least two s-stations. It will now be examined under what
circumstances this condition is also sufficient for non-singular X matrix with

exactly two such s stations, denoted as s* and s’ . If

1 y 2 3
agp,s + ajpd + byas + byqd = T
and (1.4-28)
1 -
akx ps + ag p‘?// + b2 qi// + b3 q::// = T ,

then with j; and j. containing off-plane targets, it follows from (1.4-27;

and (1.4-21) that
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and

a:// = ag'” = a:// = ¢ = 0,

When these two c-terms are substituted in (1.4-28), it is obtained:

— EY -

ar pr pr a g7 | |bs
o= -_ (1 ° 4:- 2 9 )

ay P&’ Py | a oy | |bs

For the unique solution to exist, it has to hold for the determinant of the

matrix to be inverted:

where

D = ps P - Dy D& - (1.4-292)

(The symbol D should not be confused with the one used in section 1.41
to denote other types of determinants.) If it held that D = 0, then (1.4-29a)

would result in

Vs (Xs’_ Xk) 678”_ YR) = YS’ &V YK) (XG”— Xk) H (1‘4—29b)

which would be fulfilled if:

1) vy = 0, station s 'lying on a straight line through
stations 1, 2.

2) y&# =0, station s” lying on a straight line through (1.4-29b%
stations 1, 2.

3) Stations k, s’, s” lying on a straight line (of any
direction).
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The analysis in this fashion can proceed only if the above three conditions

are eliminated, which is hereby assumed. The solution of (1.4-29) can he

then written as

ay = urbs + uzhs

ay = vibp +vzbs ,

where
1
w =T (e - o piv)
1 53 3 2
Up ~D(psqs”—qspsﬂ),
v 1 s L o_ ko3,
I“D(S'ps P dé )
SR PP NE SG
VE“D(qS P - P Q" ) .

(1.4-30)

(1.4-31)

These terms can be further developed and the following identities made:

(Dy ) w = £°t,

(Dyyfs') va = £t
where

t = £ - £ 2
thus

f4=2

m "ELT Vi

Further,

(D v Edup= 465" £/ + (6 £/ - £ £30) 3 -2 30 820,

(D ykf41)V2 =‘f41 (f:/ ft// - fsl/ f?” ).

(1.4-32)

(1.4-33)

When the relations (1.4-30) are used in the row block for station k in the
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system (1.4-21), it is obtained that

ay
M bs = 0 (1.4-34a)
bz
where 1 "1
M = [;kz s ulf‘?xf +vivy +af | > UpVi +VaVy +qy |2 [ 1. (1.4-34D)
‘1 1
[ .
It is easy to show that when
rank M = 3, (1.4-35)

then A matrix is non-singluar. Clearly, when (1.4-35) holds, then the only

solution of (1.4-34a) is

al=by=hs = 0.

But then

from (1.4-20). Thus all the b-terms and consequently all the c-terms are
equal to zero. Since singularity A) is assumed to be eliminated as a
necessary condition, the a-terms for the remaining i-stations and s- stations

must be equal to zero as well, which completes the proof for non-singular

o~
~

A

It remains to examine the rank of matrix M. If the conditions for

rank M < 3 (1.4-36)
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are found and eliminated, then the sufficient conditions for non-singular

% have been specified. If (1.4-36) holds, then

M| =0, (1.4-37)
which is

| 3
Zy) uy Xy Xy) vV (Y1 ¥y) + Qo Ue K1 = Xy) + V2 (Y1 Vi) +
{ [ a |
Zo Uy (Xe —%y) + Vi (Y2-¥) +dp | Up (Ko~ Xi) +Va (Yo-yy) +q |=0- (1.4-382)
] i
Z ' m®-x) Vi -y FA7 (ua(X-Xy + V2 (¥ - Y9ty
{

Here (X, Y;, Z;) and Xz, Yo, Z3) denote the first two targets in j, (Jig and
jke)’ while the variable point (X, Y, Z)stands for any further target in j,.

The above relation represents the equation of a plane in (X, Y, Z), which
passes through j and j, (the equation is fulfilled when the coordinates of

k, or j, are substituted for variable point). Upon performing the obvious

equivalence operations on (1.4-38a), it becomes:

i
]
|
Z, ‘ Uy (X1 -xg) + v (Y1 +Yy) +Qk2 b otg (X =Xy ) +Va (Y1-Yy) +Qk8
]
|
Zo = Zy ) Uy (Xo-Xy) +vy (Y- Yy) D Up (- Xy) +vp (Ya- Y1) = 0. (1.4-38b)
| !
f
Z - Zy ' uy(X-X;) vy (Y -Y,) | U (X-Xy) +va (Y -Y,)

The second and third rows in this determinant are dependent if it holds that

X-X _Y-Y, _Z-1%
Xg" X1 Yg- Yl Zg" Z]_ ’

i.e., if any further target in j, lies on the straight line connecting jr, and
jka . Consequently, (1.4-36) holds and A matrix is singular whenever all

the targets in j, lie on a straight line.
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From the form of (1.4-38a) it is also clear that | M| = 0 whenever
Uz = cu,, vz =cvy, and qlf = cqf . (1.4-39)

Then the third column of M is the c-multiple of the second column
identically for any X,Y,Z. The conditions leading to (1.4-39) will be now
examined in detail. Tirst, the case with qf = qi =0 ig discarded in
accordance with (1.4-24a), (1.4-24b), ahd the discussionl which followed.
With ¢ =qg/qZ, the relation (1.4-39) yields two conditions:

i

ufo ul‘lff

and

qu;(a = qu}:: .
The first condition leads to
G for- LITE) f + @2 f B/ + L1560 - BEP60 - L2E06) 1 +
+ (@285 - L2 Er = 0 (1.4-40a)
and the second condition leads to
(G E2E - ERELE - G282 4 £RE1E20) 80 + (B L EM- 1211 ) 3 +
¢ (it - EEJE) 5 = 0. (1.4-40b)

Both (1.4-40a) and (1.4-40b) represent a second degree curve (in general
different from each other) for s”, passing through stations 1, 2, k, and s ;
this follows from (1.4-17a) and from the fact that f.” = f,’ whenever s”= 3.

Unless (1.4-40a) and (1.4-40b) represent the same curve, a common solution

for s” would be restricted to some isolated points. Accordingly, such cases
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will be discarded. Should the above two equations represent the same curve,

it would have to hold identically (for any s’ ):

@212 - £242) 1% = o [((ffr - L ED) £/ + (B - P57 ], (1.4-41a)

(£ £2 - £2£3) £2 + (EPfL - £2E2) 13 = o (12 - L5 (1.4-41b)

(£ - B2 fy) £20 = c (BPf5 - L )£ . (1.4-41c)
Since

£f2 - £2f, # 0,

(due to the earlier specification that qf # 0) it follows from (l.4-41c) that
21 = -cfj, (1.4-42)

Apart from the cases when y,/ = 0 which was eliminated in (1.4-29b%

due to D # 0, or x,’= X, it follows, when (1.4-42) is substituted to either

of (1.4-41a) or (1.4-41b), that
(G - £0°) 10 + @1 - )2 + B - L1 = 0. (1.4-43)

This is the equation of a second order curve for s’, passing through stations
1, 2, 3, 4, k(if the substitutioné are made for £, »according to (1.4-17a) -
(1.4-17c), the equation (1.4-43) is fulfilled). With this specification regarding
station s’ made, the conditions for station s’ can be further examined. If

s” =3 is considered in (1.4-40a), then (1.4-43) is obtained (multiplied by -fZ)
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and the curve (1.4-40a) is seen to pass through station 3. If s" =4 is
considered in the same equation, then two terms are obtained: one which
was already shown to be zero in the substitution s =3, and the other which
yields again (1.4-43), multiplied by -£°. Similar conclusions hold if the
equation (1.4-40b) is used with the same substitutions for s” (leading to
(1.4-43) multiplied by f; and £f). Thus it has been shown that for
(1.4-39) to hold, both stations s’ and .s” would have to lie on the same
second order curve passing through stations 1, 2, 3, 4, k (except for some
special cases which were discarded). In other words, | M| =0 would hold
identically for any X, Y, Z if s’ and s” were on-curve stations.

Next, an investigation will be made in order to determine whether there
are some more general conditions than those expressed above, under which
| M| =0 would hold identically for any X, Y, Z. Such conditions would
imply that

a=b=c=d=0 (1.4-44)
in the equation of a plane for X, Y, Z, given as
aX +bY +cZ +d = 0.

First, the following notations will be made:

an = u Xy - %) Fvi(Yy-yy) fag, (1.4-45a)
A =W (Xe - X,) + vy (Yo-¥,) +a2, (1.4-45b)
s = U (Xy - Xy) + Va(Ye-Vy) a2, (1.4-45¢)
az = U (Ko - X,) + V2 (Yo ¥,) +af . (1. 4-45d)

The conditions (1.4-44) yield respectively, upon considering the equation
(1.4-38a):
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W (8223 - axZ;) = Uz(aypZz - awrpsdi),

Va(anZz - apZ,) ,

il

Vi(anZs - amZ,)

Q138 T Aypdn s

aZ(az1Z2-2%,) = Ay (81325~ 212Z,) -

When these four equations are further developed, the first combined with the
third, and the relations (1.4-45a) - (1.4-45d) considered, the following results

are obtained respectively:

il

[(Yi-¥Yx)Zz = (Yz-Yy) Z1] (Wy Vo= ViUp) + (Zo- Zl)(U-lCIS" Oli uz) 0, (L.4-46a)

i

[(Xy=%y) Zo = (Xz = Xy) Z1] (UyVo-VylUp) +(Z1- Zp) (vidp - Qfve) = 0,  (1.4-46b)
[(X1=%y) (Yo =¥x) = (Y1-¥y) Ke= %) ] (U V- VilUp) +(X1-Xp) (Ueq0 - a5 ug) +
+ (Y1-Yz2) (V145 - dfve) = 0,  (L.4-46c)
DX %y) Zo (o= %) Z0] (10 - 4 2) +[(Y1-Yi ) Z2~ (Y2~ ¥ Za]
3 2 .
X (quk—qk Vg) -~ O ° (1a4:”46d)

If Z, =Z,, the discussion is relatively simple. From (1.4-46a) and (1.4-46h)

it is obtained:

(Y1-Y2) (v -viuz) = 0
and

(X3 - X)) (uyve - vyug) = 0

from these, it holds in general that

Either of the equations (1.4-46¢c) or (1.4-46d) yields in general:
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.:?NEGJ

- Vo
Vi

Considering the last two relations, (1.4-39) is again found to be the condition
which makes | M| =0 hold identically for any X, Y, Z. However, in general
7,# Z5. From the equations (1.4-46a) and (1.4-46b), it is obtained:

W4y - qf Uy = -cy(Wwvs - ViUg) , (1.4-47a)
Ugy - Qeve = Cy(Wva- viUz) , (1.4-47b)
where
c, = - —— c, = - ov— (1.4-47c)
Y Zpm% 0 ZpmTy

and where a, and a, were defined by (1.4-14a) and (1.4-14b). The equations
(1.4-46c) and (1.4-46d) are fulfilled automatically when (1.4-47a) and (1.4-47b)
are used, and therefore, do not have to be considered anymore. Finally,

{1.4-47a) and(1.4-47b) can be rewritten as

Uy (Qy +CxV2) = Up(Qf +cyvy) (1.4-4832)
and

Vi(Qi +CxUz) = Va(af +ceuy) . (1.4-48b)
Clearly, these two equations hold identically, whenever
- - 3 _ 2
U =cuU;, Vz=cVvy, and g, = cqy ,

which is the familiar expression (1.4-39). Otherwise, each of them can be
shown to represent a fourth order curve for station s”; in general, they are
both fulfilled for station s” located at their intersections. Since these are
isolated points, they will be discarded from further discussion. However,

before dismissing the considerations connected with the-fourth order curves

78



of (1.4-48a) and (1.4-48b), it will have to be found out when these curves
may coincide. They can be both written in terms of £l R ff”, 20, (f;‘// }Cg
fsl” fZ, etc.; in order that they coincide the coefficients of the same powers
in the variables, and therefore also in the terms f,#, f;7 x f;#, would
have to be constant multiples of each other. When only the terms fo7 x f.#
are considered with ¢ denoting the multiplication constant for the above

coefficients, relations of the following type would have to hold:

Cyfd;l['fegfszlff' + ff(fsz’)z] = ch[ff(ff')z'-fff*’z/f;sl]
: (1.4-48c)

Altogether, there are five equations of this type, pertaining respectively to
the coefficients of (fsl”)z, fsl// £, fslﬂfi// s (ff//)z, and ff// fss” , Since there are

no terms (fssﬂ )2 in either of (1.4-48a), (1.4-48b). If

cy # 0, (1. 4-48d)
then

c = XL

Cx

satisfies all five relations (1.4-48c). Considering (1.4-47c), the constant c

can be written as
c = =f . (1.4-48e)

Under certain circumstances (namely, when x, has a specific value of

(Z21Xz - X1 Z2)/ (Za - Z,)), it could happen that
cy=a, = 0. (1.4-48f)

But then the relations (1.4-48c) would finally lead to the following conditions

for s’:
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These represent two second order curves for s’. Since the curves cannot
coincide, s’ would be restricted to isolated points (intersections of the two
curves); such cases are discarded according to the earlier statements.
Consequently, only the expression (1.4-48e) will be considered in further
investigations. Next, the coefficients of 2, £, and £ of (1.4-48a)

and (1.4-48b) will be compared. Using the same c¢ as in (1.4-48c), it

has to hold:
Qe 2 - q212 1% = c(qif - o2 ), (1.4-48g)
aP 2ty +q2tl Y - qE2 £ = capfy (1.4-48h)
and
aififsr = cqify . (1.4-481)
For qf such, that
a° # 0, (1.4-48j)

the equation (1.4-481) gives

c = fl . (1.4:—4:81{)
8
In this approach it is assumed that x,/ # X,; then fis # 0, since yg/ # 0
is assumed throughout. With this c¢ substituted in (1.4-48g) and (1.4-48h),

the following relation is obtained for station s’:

(Q 2 - ag ) f57 + (-aftd) £ + @ &) B = 0. (1.4-481)
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On the other hand, the constant ¢ from either (1.4-48e) or (1.4-48k) must

be the same. Consequently,
a,fy - ade = 0 (1.4-48m)

must hold. Since y,s # 0, this expresses an equation of a straight line for
s’, passing through k and having the direction given by

tg o=
X
(see earlier notation); as a matter of fact, this line is exactly the line 4,
generated by intersection of the plane 7 and the plane of ground stations.
Since (1.4-481) and (1.4-48m) both give the conditions for station s’, it

would restrict s’ to isolated points unless the two loci coincide. But for

that to occur, it would be necessary that

a;f’ - qiff = ca,,

a5 fe = ca,,
and

agty = 0

be satisfied (for some constant €), giving immediately
Q2 = 0 (1.4-48n)

and

2
a—xf4 - ayﬁl

it
<

(1.4-480)

(The case qf = qlf = 0 had been discarded.) However, with g2 = 0 the
equations (1.4-48g) - (1.4-48i) hold identically for any s’ if
c = £,
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which then replaces (1.4-48k). Equating this constant ¢ with the one given
by (1.4-48e), one gets again the expression (1.4-480). Since yq £ 0,

(1.4~480) can be finally written as
AyXg — Ayxys ~ (ayXe - ast) =0 9

which is an equation of a straight line for station 4, passing through station
3. Its direction is given as 7

a
tga = —,
ax

which means that the line is parallel to the line 4. On the other hand,

qf =( implies that stations 3, 4, and k are lying on a straight line. Conse-
guently, stations 3, 4, and k would have to lie on the line 4. Under these
conditions the 4th order curve for s” would be the same, whether given by
(1.4-48a), or (1.4-48b). However, this would be a very special case. An
important conclusion can now be made: except for some special cases,

M| =0 would hold identically for any X, Y, Z only if the relation (1.4-39)

were satisfied, i. e., only if both s’ and s” were on-curve stations.

Case (al). According to the above conclusion, it is clear that | M| = 0 does
not hold identically for any arbitrary plane. It holds only for a special

plane, called critical plane, which can be computed from (1.4-38a) and avoided,
Matrices M and A will then be non-singular. The equation of the critical

plane is given as
aX +bY +cZ +d =0 (1.4-49)
where the coefficients are found from (1.4-38a); they.are:

a8 = (8z Uy — anls)Zy + (2Up ~ agUy ) Z;,
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b = (Eelvl - a—.nvg) Zy + (gravz - amVy)Zy,s
(1.4-50)

C = 8nlz ~ 2pdz
” 3\ _4 2 — N2
d = [ay; (XU Y Ve~0Ox ) ~8z1 (X U +Y V1~ Ay )] Zo + [Qz (XU + YeV1~ 0y )

- A (XyUp +Y1<V2"qg)] Zy .

Case (a2). Suppose that the plane of j, passes through station k, i.e.,

it is the plane 7. It will be examined under what circumstances the
critical plane generated by | M| = 0 and the plane 7 can coincide assum-
ing now that j, does not contain all the targets in a straight line. When
they are avoided, matrices M and X will again be non-singular. With
(Xy» Yy» 0) substituted for (X, Y, Z) in the equation (1.4 - 38a), it would
have to hold that

Za ! (Xn - %) #V (V1mYi) +A7 | U (Ky=%y) + V2 (Y1- ¥y ) +0y
i i
! !
Zs ! ul(Xe_Xk)+Vl(Y2_YK)+qf} Uy (Ko ~Xx) + Vo (Yo-¥u) +as| = 0,
| i
0 | a5 dy
should the plane 1Ml = 0 and the plane 7 coincide. (q: and g2 can be

eliminated from the first two rows by equivalence operations.) This is

equivalent to the equation

axa, + aya, = 0 {1.4-51)
where
a, = U qs - u,q7, ‘ (1.4-51a)
_ 3 2 N
ay = ViQy - Vady » (1.4-51b)

and where a, and a, were given by (1.4-14a) and (1.4-14b).
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Before considering (1.4-51) in general, some special cases, the most

important being

will be investigated first. If

auZO’

it is obtained upon considering (1.4-32) and (1.%-33):

@ e - g2 ) fr +[-ap £ - a0 (B B - 25 ] £74q £l 26 = 0 (1.4-52)

which represents a second order curve for s”. Using the now standard
approach of examining through which points a second order curve passes,

it is seen that the curve given by the above equation passes through station
1, 2, k, and s’. (The same curve is obtained in terms of s’, i.e., when
all the elements associated with s’ and s” are interchanged; the curve
would then pass through 1, 2, k, and s”.) Using certain previous stipulations
(i.e., f* # 0 and eliminating of the conditions (1.4-29b") which cause D =0)
and discarding cases when some of the stations would be restricted to
isolated points, only one special case fulfilling (1.4-52) may arise; it is
the case when stations 3, 4, and k lie in a straight line parallel to the
line connecting stations 1, 2; then qf = £° = 0, and the equationis satisfied
identically for any s’ s”. Otherwise, (1.4-52) represents a general second

order curve. When

a, =0

is considered, it is similarly obtained:
(af £ - defenfy + offy 2 - aiferly = 0 ., (1.4-53)
The same comments can be made with respect to this equation as those
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made when (1.4-52) was considered, except that now (1.4-53) is not

satisfied identically when qf =ff = 0. Should the condition
a, =a, =0

be fulfilled, station s” would be in general restricted to some isolated
points, generated by simultaneous solutions of (1.4-52) and (1.4-53); they
are intersections of two second order curves represented by these equations.

Again, such cases are discarded unless the two curves coincide; if that is

the case, the corresponding coefficients in (1.4-52) and (1.4-53) are com-
pared the same way, which lead to equations (1.4-48g)- (1.4-48i) and
exactly these same equations are obtained now. In this manner one
arrives again at the equation (1.4-48l). Since s’ and s” were mutuzally
interchangeable, the same curve as that represented by (1.4-481) would be
obtained for either s’ or s”; to simplify the derivations, any of these two
stations will be denoted as s and the corresponding f-terms as f;. When
2

qu and q,.° are substituted from (1.4-22) into (1.4-481), the second order

equation for s is obtained in the simpliest form:

@52 - £260 ) £, + (B2 - £2 1.0 1,2 + 21~ £ 6212 =0 .

The second order curve for s represented by this equation is seen to pass
not only through stations 1, 2, k, but also through stations 3 and 4. Conse-
quently, it can be said that when both stations s’ and s” are on-curve stations,
then ay = ay = 0 holds.

Other special cases of (1.4-51) are easy to formulate and will be mentioned

only briefly. If

then a constraint for the x-coordinate of station k is obtained, namely
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21X~ X7
- Aiea 142 ., -
X = Zz_ zl ’ (1 4 54)

in addition, station s” has to lie on a second order curve given by (1.4-53).
When Z; = Z,, the condition (1.4-54) would be replaced by X, =1X;.
If

a, = ay = 0,
it holds similarly that

- Z:LYQ = Y1Z9 .
Ve Zp- 7, ’

(1.4-55)

in addition, (1.4-52) would have to be fulfilled. If Zz = Z;, (1.4-55) would be
replaced by Y1 =Y,. Finally, if

ﬁwm k would be constrained to a prescribed point with the coordinates such
as given by (1.4-54) and (1.4-55); as usual, this case is disregarded ( if it also
held that Z, =Zz, this would mean that jy, =Jy_ » which obviously is not true).

The general consideration of (1.4-51) again leads to a second order curve

for station s”. It has the form:
lax (@ f2 - q,° £57) +a, (s L £ - qf 81 £7) £ +
+ {ax[-agffy - qf @ -2 £57) ] +-ayqf £ o+

+ {aquffglf?/ - ayqff‘g‘ fg‘l)fi// =0.

This curve passes through stations 1, 2, k, and s . (Station s’ and s” could
be again interchanged). Considering the earlier assumptions and disregarding

certain special cases according to previously mentioned specifications, only
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one further special case will arise:
a = 0
together with
a,ff - afi =0,
implying that stations 3, 4, k, lie in a straight line of the prescribed
direction '

tgo =

xm LN

regardless of s’ and s Obviously, it is the line 4. Consequently, the
relation (1.4-51) is fulfilled identically for any s’, s”, if stations 3, 4, k
lie on the line 4. Otherwise,(1.4-51) leads to a second order curve for station s”

expressed as

x"Ax +x"a = 0 (1.4-563)
with the elements:
an =1,
1 G
d1p Tz = E _d]-— »
G
Qg = 2, (1.4-56b)
G
ay = "Xz
and a, = Ga
G ,

where

G = qf £ (a fo-a,f0) ,

Gy = a, (@it - o 5 £5) + a,(@P & -2 £ 12,
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Go = ax[- Ay 21 - ay (6 £/ - £5/)] +a,q, £ £/,

and (1.4-56¢)
Go=ax{ (-q2£2 8 + q2E2 £ ) x, + [a5 26 +q2 (81 £2r - £2620)] vy -

"‘qufiﬁ' = (Xk'Xz)}+3~y[(‘qsﬂ=lfasl +q§ﬁi§’)xk-qff‘ff§’yk+

Yy
2elel Xy
+ 4y i o (Xk - Xe)] .
k
In conclusion, it can be said that the plane corresponding to | M| = 0 and

the plane 7 coincide if station s” lies on a second degree curve expressed

by (1.4-56a) - (1.4-56c). Of the special cases, the most significant was the one
characterized by stations s’, s” as being on-curve stations. But for such
configuration | M| =0 was fulfilled identically for any X, Y, Z and, therefore,
it had to hold for plane 7 as well; this case thus provided a useful verifi-
cation of the earlier derivations. A quite important special case also arised
when stations 3, 4, k lie on the line 4. Finally, when station s” does not

lie on the above curve and none of the special cases occurs, |M| =0 does

not hold and M and X matrices are non-singular.

Case (b). Due to necessary conditions, the relation (1.4-27) will have to hold
for at least one s station, i.e., the corresponding j. will have to contain
off-plane targets’ (in addition to js and js). It will be examined under what
circumstances this condition is also sufficient for non-singular K matrix when
exactly one such 's station is observing off-plane targets. With this station

denoted as s ', it means that

-
rank [v¥, Vi’ V¥, [1} 1= 4. (1.4-57)

Due to the j, and js (containing off-plane targets), it holds that
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af=al =af = ¢ =0, (1 4-58a)
which are already expressed in (1.4-18), and

as*=as’=ac = =0 . (1.4-58Db)

Using the first two rows in the system (1.4-11a), by and by can be expressed as

follows:

- P S
b, £ | |8
- bs . (1.4-59)

ba £ 2

For the unique solution to exist, it has to hold for the determinant denoted by D

as in previous sections) for the matrix to be inverted:

D # 0
where
D= &% -£fs5 . (1.4-603)
For D=0 it would hold that
Va¥s (X4 - X3) (Y5~ ¥Ya) = Ya¥s(Y¥a~¥s) (Xs5~X3)s (1.4-60b)

which would be fulfilled if any of the following occurred:

0, station 4 lying on a straight line

1) yu=
through stations 1, 2.
2) ys =0, station 5 lying on a straight line (1.4-60b ")

through stations 1, 2.

3) Stations 3,4,5 lying on a straight line
(any direction).
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These three conditions will be assumed eliminated. The solution of (1.4-59)

is then given as

by = gbs,
(1.4-61)
b= hbs,
where
_ 1 a2 2.8
1
h=-3 (115 - &2 &) .

Expressing c, and c,’ from the system (1.4——113.) and using (1.4-61), it is

found that

Cy = tkbg,
¢/ = t:y'bg
where
t, =gfl +hf2+1>, (1.4-63a)
ty =gfe! + hi2 + £, (1.4-636b)

With these notations, the system (1.4-11)can be written as

afvE + a,ﬁ";’;kz +af\x;'1,f + baty 1 = 0
1
_ — - (1.4-64)
" 1
afpe’ |t | + af po! {ﬂ + 0 +a¥vi’ +al’vi’+aj/vy’  + bt le =0
1 _1J 1]
where the row blocks for some stations i and further stations s could be added in
an obvious fashion.
At this point, it will be examined for later use under what conditions
t, =0 (1.4-65)
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and

t /=0 (1.4-66)

can hold. The condition (1.4-65) leads to a second degree equation in x,, y,,

namely
E12-282) 1) + @ E-128)52 + (P -L ) =0. (1.4-67)
Since
f, = 0 whenever k =1, 2, 3,
f, = £ if k=4,
(1.4-68)
and

fk:fs ifk':"5,

the second degree curve for station k corresponding to the above equation is

seen to pass through stations 1, 2, 3, 4, 5. The condition (1.4-66) leads to

EREE -2 26y + (RS -1 )£ + (PP -£7£2) 5= 0. (1.4-69)

It is clear that the second order curve for s’ represented by this equation
passes through stations 1, 2, k. If f,/ were replaced by f, or f5 , the
equation (1.4-69) would hold. Since (1.4-17c¢) would have similar form with

respect to station 5, i.e.,

it follows that (1.4-69) holds for s’ =4 and s’ =5 whenever it holds for
s’ = 3; but this happens only if (1.4-67) is satisfied. Consequently, the
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second order curve for t;'=0 passes through stations 1, 2, 3, 4, 5

tx = 0 holds.

only if

In this case the second order curves for s’ and k given by (1.4-66)

and (1,4-65) coincide. Otherwise the curve for s’, passing through 1, 2,k, isgivenas

:
x'Ax + xa =0,

D D X
az = ‘]‘D'l Xx““zYk"'f (Ex~X2) »

where
a; =1
A1 ¥ ax; T % QD]'
o - 22
a1 = —Xp
and where

D, = f££5 - £°% ,

D = ££8 - £

(1.4-70a)

(1.4-70b)

(1.4-70¢)

After these considerations amore general discussion of case {b) can resume. Due

to (1.4=57), the selution of

Fas ]
. .
o 1 2’
X ~y ~z .
[vs!y, vars Vg*5 |3 ] als = 0
1
c
ig given as
X, _ .7
ag’ = ag’ = ags = ¢ = 0
where
1
— 0 X Yy .2 !
C=ayg P!t oay psl+b3ts
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as seen from (1.4-64). From here, the coefficient bs will be substituted in

the first row block of (1.4-64); namely,

1
bs =g (afps’ * 2 H) (1.4-72)
and
2y
M |af |= 0 (1.4-73a)
2
where
- e |1 ¢
M= [Ve, VW-pe/ 2 |t |, Vym bt 5 1. (1 4-732b
t' | 3 t,

Necessarily, it has to hold that
tg/ £ O (1.4-74)

so that s’ cannot lie on the second order curve described in (1.4-69) through
(104—700)0

Again, it is easy to show that when
rank M = 3 (1. 4-75)

holds, A matrix is non-singular. The only solution of (1.4-73a) is then

ag =al=a, = 0; (1.4~752)

then
bl = bg = bs =0
must hold due to (1.4-72) and (1.4-61). Thus, all the c-terms are equal to

zero, and since by necessary assumptions singularity A) is supposed to be
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eliminated, the a-terms associated with any i and s stations added to the
system (1.4-64) would now have to be zero (for stations 4, 5, k, and s’

the trivial solution for the a-coefficients was already demonstrated in (1.4-58a),
(1.4-58b), (L.4-75a), and (1.4-71), respectively). This completes the proof

for the non-singularity of X matrix.

It remains to examine the rank of matrix M. If the conditions for
rank M < 3 (1.4-76)

are found and eliminated, then the sufficient conditions for non-singular A have

been specified. If (.4-76) holds, then

M| =0, (1.4-17)
which is
, ! t
Zy Xl‘Xx‘Pg’J:? | Yl-Y‘pi’t‘L,
) i 5
i t 1
, j 1 | t
Zz ' Xp=- X~ pPs’ -t-:‘, . Yoo V- p?'“'t:‘, = 0, (1.4-78a)
| i
! t ! t
20X cxe B | Yoy dvs
ts ts

with the same description as that made with respect to (1.4-38a); namely, the
above relation is the equation of a plane in (X, Y, Z), which passes through
jkl and jkg. With the same equivalence operations which lead to (1.4-38b),

(1.4-78a) now becomes:

i t i t
Zy Xl—xk—pi'zx', | Yl-Yk_pi‘,-—k-/—
| s | ts
I
Z:-Z1 |, Xo- X, C Ya- Y, = 0 . (1.4-78Db)
i {
! i
Z - Zl 1 X - Xl | Y - Yl
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Again, the second and third rows are dependent if any further target in j, lies
on a straight line connecting jkl and j“a . Consequently, x matrix is singular

whenever all the targets in j, lie on a straight line.

Next, the conditions will be determined under which | M| =0 holds
identically for any X,Y,Z. As seen earlier in (1.4-44), such conditions

would imply that
a=b=c=d=0 (1.4-79)
in the equation (1.4-78a) of a plane for X,Y,Z, written as
aX +bY +cZ +d =0.

It cannot happen when Z, = Zg, since (1.4-79) would then lead to Jo = kg,
which is not true. When Z, # Zz, then the conditions in (1.4-79) imply that

t
Xy + ps’ E&’- = ky
s
and (1.4-79a)
2/£k_ -
Vet Ps' 17 = Ky
8
Xi1Z,-7:X Y1Z2;-72,Y
where k.= 142 142 and k. = 142 112 e '
T, i (1.4-79b)
The relations in (1.4-79a) can be expressed as
[Ve (V- ky) 81 £/ + [V (Ve Ky) b= t] 2/ + [, (vi=ky )] £ =0 (1.4-80a)
and
[V (Re=kx) 8- ty] £a/ + [V (Xe=Ky) h] 557 + [ (- ko)1 £3/ = 0, (1.4-80b)

. 4 . . .
which represent two second order curves for s’; in general, s’ is restricted
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to some isolated locations, unless the two curves coincide. In the latter case

it would have to hold according to the now standard procedure:

Ve(Ve-Ky)8 = e[y (xe- ka)g ~t, ],
y (yz_ky)h_tk: C ¥y (Xg~ kx) h,
Y(Yk"ky) = CY (X~ Ky) -

Whether

xy =k, and yx =k, (1.4-81)

holds or not, the above equations are fulfilled only when t,=0, i.e., when
station k lies on a second order curve through stations 1,2,3,4,5. But, then
(1.4-81) would have to hold due to (1.4-79a). These two conditions for k

are either impossible or restricting station k to an isolated point and will

be therefore discarded. Consequently, | M| = 0 cannot hold identically for

arbitrary points X,Y,Z.

Case(bl). According to the above conclusion, |M| = 0 holds only for a
special plane, called critical plane, which can be computed from (1.4-78a)

and avoided. Matrices M and R will then be non-singular. The equation of

the critical plane is given as

aX +bY +¢cZ +d =0 (1.4-82)

where the coefficients are found from (1.4-78a); they are:

t
Y1Zo- Z1 Yo - (Ve+D5' 75 ) (Z2-Z1)

a = 5 ts,
1ty
.b = Z].XE_ Xlzz+ (Xk +p8 t 7 )(Zg_zl) ]
8
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¢ = X3Yom ViXe + Uyt p?'ﬁ,)(xe Xy - (xk+ps'—h><Y2 Y1),

jo))
i

t
(Y +p§'gk;><xl Zz-Z1Xg)" <xk+ps';§><lez~zle>- (1. 4-822)

Case(b2). Suppose that the plane 7 is now the plane containing all the targets
in j, and that all the targets in j, do not lie in a straight line. Should the plane
{M| = 0 and the plane 7 coincide, it would have to hold that

Zl E Xl"xk ! Yl—yk
. i

Zp , Ko~ Xy L Y-y | =0
I t, t
bl =% . e %

O ' ps tsl : s tsl

Whenever y./ = 0 or t, = 0, this relation holds, since the third row inside
the determinant contains only zeros. In general o/ # 0, t, # 0), the above

equation holds if

axfy’ = a,fy’
is satisfied, which yields:
Xgfdy — YS,ax" (Xyay - Ykax) =0
But, this is the equation of a straight line for station s’; this line passes
through station k and its direction is given as

a.
thé:—L s
Ay

which means that it is the line 4. Consequently, | 17[[ =0 holds in any of

the following three cases:
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1) vy, = 0, station s’ lying on a straight line through
stations 1, 2.

2) Station s’ lying on the line 4. (1.4-83)
3) Station k lying on a second order curve through
stations 1,2,3,4,5 (i.e., & = 0).

Otherwise M and A matrices are non-singular.

Case (). The satellite groups ja, js, js', are now all .considered to contain

off-plane targets. Therefore,

C, =¢Cs =¢Cg =0 (1.4-84)

holds, which is also true for the corresponding a-terms. If station 6 lies on
a second order curve through stations 1,2,3,4,5, then (1.4-84) alone would
not imply that all three b-terms in the system (1.4-11a) must be zero.

I would then be possible to express b, and by in terms of b; and the
analysis would be carried out the same way as it was done for case(b).
Consequently, it will be assumed that station 6 is not lying on a second order

curve through stations 1,2,3,4,5. This gives for the b-coefficients:

as the only possibility, making all the c-terms equal to zero. With
singularity A) eliminated as a necessary condition, all the a-terms for

stations i preceding station k are zeros. The system (1.4-11) is thus

reduced to
x’V ~ z(\)
agVy +ay vy +a,vy : =0
, (1.4-85)
1 1
L ° Yy 2 . ~ ~ ~

ay Ps | | fagps s | +0 + afv® +alv) +afvyi = 0

1 1
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where any number of s-stations can be used.

Case(c1). When the targets in j, are not in plane with station k, then it
holds that

rank [v¥, vy, ve] = 3, (1.4-86)

which forces the three a-terms for station k to be zero. Due to singularity
A) eliminated, also a-terms for all s-stations must be zero which thus brings
all the a-terms and b-terms to zero. Accordingly, A matrix is always non-

singular in this case.

Case (c2). When the targets in j, lie in the plane 7 (as a special case they can
aiso lie in a straight line), the relation(l. 4-86) does not hold and a-terms for
station k are not automatically equal to zero. If the rank of the second group in
(1.4-85) were less than four,the system (1.4-85) would not have to have the tri-
vial solution and A would be singular. Thus,at least one of the groups j: will

have to contain off-plane targets. If the corresponding s-station is such that it

lies in a straight line with stations 1 and 2, namely

then it holds that
ps =p& =0 (1. 4-87)

and the a-coefficients for this station must be zeros. But that leaves the

a-coefficients for station k unchanged (not necessarily zeros). Therefore, it
will be assumed that

ys # 0,

which means that (1.4-87) cannot hold (unless s =k which is not true).
js is assumed off-plane, it holds that

Since
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af=al=al=¢c=0 (1.4-88a)

where

¢ =afp; +ajp’; (1.4-88b)

it is further assumed that

pslié 0, psz_% 03

otherwise the following proof would be slightly different and somewhat shorter.

From (1.4-88a) and (1.4-88b) it follows that

a) = —arie—Fe (1.4-89)
Vs~ V&

when substituted in the first row block of (1.4-85), this yields

= 0 (1.4-90a)
where

= ~ X ~ ~
M= [vf -y, v/ 1, (1.4-90b)

or

211
i
e
[
1
2
1
lt|
&
1
=

Zg H (1.4-90¢)

here, the coordinates (X,Y,Z) can denote any point in 7.
Clearly, when it holds that

rank M = 2, (1.4-91)
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then matrix A is non singular. It follows from (1.4-90a) and (1.4-89) which
bring the a-terms for station k to zero, from (1.4-88a) for station s, and
from the fact that singularity A) was eliminated (for any further station s).

It is then sufficient to specify when (1.4-91) does not hold and to avoid Sﬁch
cases; namely, it has to be found when the determinant of an (2 x 2) submatrix of M is

equal to zero, For the first such submatrix, one would obtain that

[Xo - = 525 (Vy - y,)] 2y = [Xy ~Ky = 2% (Yy-y,)] Zo,

Vs — V& Vs = Y&
or, after some algebraic manipulations:
Xl - Xk Yl - yk Zl
X2 - Xk Ye - yk 22 = O Py
Xg = Xy Ys Y« 0

which stipulates that station s lies on the line . The same results would be
obtained for any other point in 7 replacing Ji, OF jegs in other words, with s on
the line 4 the above determinant is equal to zero with any two targets in 7.
= As seen above, if s is such that it lies in line with stations 1 and 2, or on the
line 4, then the fact that j, contains off-plane targets is not sufficient to make
X matrix non-singular. In order to achieve it, still another satellite group
would have to contain off-plane targets. As demonstrated earlier, any such
group would be of no help if y, = 0 held for the corresponding station. There-
fore, only y, # 0 and the corresponding j, will be considered. Suppose that two
such satellite groups are denoted as j,; and j,~. If any one of the stations s or s’
is such that it lies on the line 4, the corresponding group j, alone can be of no
help to make ?fnon—singular, as seen from the above derivation., If both stations
lie on 4, then, necessarily,

X"~ % - Xg =X
N " NN

holds and the relation between a* and & is unchanged; it remains such as given
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by (1.4-89). The solution for the a-coefficients for station k is then the same,
whether one or both stations s are used. This means that no matter how many
s-stations have their satellite groups off-plane, as long as they all lie on the
line 4 their contribution cannot make A matrix non-singular.

Consequently, ﬁ and & matrices are non-singular if there exists such s
station observing off-plane satellites, that it is not lying on the line connecting
stations 1 and 2, or’on the line 4, (Using the earlier terminology, one could
also say that singularity A) for station k should be eliminated with respect to
that particular station s.)

1.4123 Summary for Group j, Containing ''In-Plane Targets".

In this section, several most important conclusions will be repeated in order
toc summarize the whole of section 1.412 which deals with the group j, containing
only in-plane targets. The necessary conditions for non-singular X matrix were
such that at least two satellite groups besides j. had to contain off-plane targets,
that singularity B) did not occur (all stations lying on one second order curve),
and that singularity A) was eliminated (it would occur if for stations other than k
the corresponding satellite groups lay in one plane through that station, and for
station k, besides the case of all targets in j, and js lying in one plane through k
called plane 7, if in addition to the targets in j, lying in 7 all stations s would lie
on the line ¥ generated as intersection of the plane 7 and the plane of ground
stations). To stipulate sufficient conditions in order that X matrix be non-singu-
lar, the distinction was made whether the group j. lay in a general plane, or in
the plane 7 (passing through station k and including the configuration when all the
targets in j¢ lay in a straight line). When a general plane was considered the
cases were examined with the following satellite groups off-plane: js, js> and j¢
called case (al), ja, js, and js’ called case (b1l), and ja, js, and js (station 6 not
lying on the second order curve through stations 1,2,3,4, and 5) called case

(cl). Assuming that singularity A) does not exist, the necessary and sufficient
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conditions for A matrix to be non-singular were found to be:
In case (al) to avoid such plane for j, as given by (1.4-49)
and (1.4-50), and of special cases to avoid s’ and s’ being both
on-curve stations (i.e., lying on the second order curve through
stations 1,2,3,4, and k).
In case (b1) to avoid such plane for j. as given by (1.4-82) and
(1.4-82a); further, to avoid station s’ lying on the second order
curve through stations 1,2,3,4, and 5, in case that station k
lies on it, otherwise the curve to be avoided for s’ is given by
(1.4-70a) - (1.4-70c).
In case (cl) no further specifications were necessary.

When the targets of j, lay in the plane 7, the same satellite groups as above
were examined and the analysis correspondingly divided into case (a2), case (b2),
and case (c2) with the same stipulation for station 6. Assuming again that singu-
larity A) does not exist, the corresponding necessary and sufficient conditions
"were found to be:

In case (a2) to avoid station s lying on a second order curve
expressed by (1.4-56a) - (1.4-56c¢) and the special case with
stations 3,4 and k lying on the line {; a special configuration
which has to be avoided for any plane (not only 7) was already
mentioned in case (al) as s'and s’ being both on-curve stations.
Another special configuration to be avoided is the one with all
the targets in j lying on a straight line.

In case (b2) to avoid station s’ lying on a straight line through
stations 1 and 2, or lying on the line 4, and to avoid station k
lying on a second order curve through stations 1,2,3,4, or 5;
a special configuration to be avoided is when all the targets in
jx lie in a straight line.

In case (c2) to avoid station s - one further station which is
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required to observe off-plane targets due to j, lying in

the plane 7 whether all the targets in j, form a straight line or
not — lying on a straight line through stations 1 and 2, or lying
on the line L. If only the groups j, js, and js contain off-plane

targets the problem is singular in this case.

1.42 Two Replacements: Stations 3 and 2 Replaced by Stations k and s’

The difference between this section and section 1.41 consists in further
replacements of stations at the level of s-stations. For some station s denoted
as s’ (co-observing with stations 1,2, and k), any further s-stations will be
assumed to co-observe with stations 1, k, and that station s’, which thus effec-
tively replaced station 2. The following derivations will make use of some results
obtained in section 1,41; building of X matrix will be basically the same up to
and including station s’. Of further s-stations, one denoted as s’ will be con-
sidered in the following derivations. Naturally, it will differ from station &’
dealt with in previous sections in that & is now co-observing with stations 1,k,
and s’ rather than with stations 1,2, and k. The approach in this section will
again consist of eliminating the parameters associated with the satellite group
j using observations from stations 1,k and s’. The now standard procedure for
obtaining matrix % and examining its rank will be used: first, the necessary
conditions for non-singular X matrix will be analyzed with no specifications for
the satellite groups j and j,/; then in addition to the usual assumption about
j» containing off-plane targets, only the practical cases will be examined,
namely when the targets in j, and j,’ are also lying off-plane; finally, the suffi-
cient conditions for non-singular & matrix with the above assumptions will be
formulated.

The parameters associated with j;7 will be eliminated using the relations
resulting from stations 1,k, and s’ observing the targets in j,. When considering

the first two stations (1 and k), two equations similar to those given in section
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1.41 are obtained. Due to the observations from station s’(all stations are lying

in a plane), it holds that
(X /- %)Xy 4= 3%,) + (Y Sy Y [ -ys) * ZJS//(BZJS”—BZS’) =0 (1.4-92)

where jJ stands for any target in the satellite group j,. All three equations can

be arranged in a matrix form as follows:

X, s// Y, 5// yA 3 !// X ’ s// : 0
= o = - - -+ i
Xy =% Yy /<% Zy)||OYy) (Xy /%) 0%+ (Y3, ~Ve)O¥e T Zy07%
XJ B”"Xsl Yj s""Ysl ZJ 5” aZJ 3// (XJ S”_Xsl)axsl + (YJ s//_Ya/)BYal + Zj sllazs;/

The determinant of the (3 x 3) matrix in this expression is given as

D= ZJ,”(Xkya/ _kas/)-
In order that D # 0 holds, the cases with Z; /= 0 and with stations 1,k, and s’
lying in a straight line have to be eliminated (this in addition to the earlier
stipulations: x; # 0, y3# 0, yx # 0, and Z # 0 for all previous satellite groups).
The satellite parameters are then obtained as

3K,/ =

————, (-7/Te + % T4,
. Xst,—kaSI(y e T ¥ Ts)

dY, # = =——— (x /T, - %T,),
Ja Xkysl"'ykxa' ( s’ 1k X s)
and
1
azd"” ) ZJS"(&YS'-kas') [(XJ o Vs~ YJsI/X’/)Tk + (X s X s”y‘<) Ty 1,
where
Te = X/~ %)% + (Y /= Yi)O¥i + Zy /3%
and

Ty = (XJSI/_XS/)BXB/ * (YJS/I"Y!I)BYS/ + ZJaﬂaZslv

Using these expressions in (1.4-92), the following equation is obtained after

some algebraic manipulations:
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- (XYY 'XS) [(X_j ;"'Xk)axk + (YJ ;’—yk)ayk + stﬂazk ] +
+ &y -wexd) LKy -x,)3%, + (Y /=y )0y’ + Zy oz, ] - (1.4-922)
- (XY ~ViXs') [(XJ s//_xs//)axsu + (YJ s//_ys//)ays// + Z‘1 a//azs//] = 0,

Now it is possible to form A matrix: all the row blocks up to and including the one
for station s’ are the same as in Table (1.4-1), where the z-coordinates for all
stations are set to zero and the notation s’ replaces s; the row block for station
s is represented by (1.4-92a). A matrix for two replacements with ground
stations lying in one plane is presented in Table (1. 4-4).

To further simplify A matrix the following equivalence operations will be
performed:

(1) Divide each row pertaining to stations up to and including station k

by the corresponding Z, # 0.
(2) Multiply each of the last three columns by -1.

(3) Perform on the three column block of station s

dx,’» 3%,/ + P3x,”, 3y,/=»3y, + Pdys, 3z,/»3z,+ Poz{,

where

p = XV YeXd'
%Ys' — ViXs'

(4) Perform on the three column block of station k:
0% ? 0% — QOXg, OYi>O¥k — QOY¥s, %Y Oz ~ QOZ,
where

Q = X'V — VXS '

%Ys' ~ VeXs'

(5) Divide each of the rows "From §'" by -(%V'~ ViXs’) 7 O.

(6) Perform further on the three column block of station k:

7 /7
%7 9% + LEOK,,  dyod% + L dy,, 0z dm + L3z,
Y Y Ve

{7y Perform on the last three column block:
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OXa , OXg ..Xa—>..¥a

~Y40¥a = *+ ~¥xOVk>»
Vs

~Ya0Xq = *** = ¥ OXy,

OX. OX
—x—j" =2 _(x, -y4;;3)6x4— - (%Y J)axk ~X—L§‘X‘- 3%,/

(8) Perform further on the last column:

% , 3p , Xa 3g
X2 X2 Ya ¥s

(9) Divide each of the rows ""From s'" by yx # 0.
The matrix thus obtained is called & matrix for two replacements with ground
stations lying in one plane; it is presented in Table (1.4-5). Up to and including
the rows for station s’ it is identical with Table (1.4-2) for one replacement;
the notations for f-terms and p-terms would also be the same as introduced
in (1.4-9) and (1.4-10) with respect to these stations. However, new notations

will be needed in connection with station s
fl// = WY Xs” (Xk_xsl) + YszIYB//(Xs”"Xk) + XkysIYS”(XsI—Xa”)’

£ = VYo' %' (=Y s') * VX'V (T4 ~Ve) + XYV (Vo' Y4 (1.4-93a)
19 = XY o' K (%e=X{) T BESY L (X' -%) + NieX K (X X)),

1
py= -y, P¥= = w1
k (1.4-93b)

Y= (%Y - XN ES K, T = (BY S KX WIS

With the same simplified notations as in (1.4-17a)-(1.4-17c), it holds that

7
f# = 0, whenever s'=1, k, s

f/= af,’ where a = -xzy5 if S =2,

f/ = bf,/ + cfy where b = ysX-Xay, and ¢ 2%3 (%' -yixe') if 8" =3,
k

1.4~
and (1.4-94)

fr=df, + ef, + ff, if & =4,

where
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d = Y%k, € = ‘}%" (&Ys - ViXs')s £ = WX/ -%Y .
k

The basic analysis of the necessary conditions for % matrix to be non-singular
will be made in a general sense when no assumptions are made concerning the
satellite groups j and j,/ as yet. The systems associated with X matrix are

presented in Table (1.4-6); they are denoted as systems (1.4-95) and (1. 4-953),

and they closely resemble the systems (1;4—11) and (1.4-11a) of Table (1.4-3),
section 1,41, Matriees of these systems will be called similarly to those which
represented (1.4-11) and (1.4-11a). This hold also for the full matrix (i.e.,

x matrix) corresponding to the full system. The matrix of (1.4-952) hasthe same
form as the matrix F given by (1.4-12). The necessary conditions for the full matrix
to be non-singular will be again divided into the row conditions and column
conditions; the latter, pertaining to singularity A) and singularity B), will be
treated separately.

The row conditions are exactly the same as those investigated in section
1.41 with respect to the system (1.4-11), They require that at least three
quads observe their targets off-plane.

For the analysis of column conditions, singularity A) will be examined first.
Upon considering A matrix of Table (1.4-4), it is observed that singularity A)
occurs for station k whenever all the targets observed by it (here targets in jy
and in both groups js) lie in the plane with it (called plane m) with a similar con-
clusion for station s’ Upon retracing the steps leading to the above A matrix,
it is seen that singularity A) occurs under the same conditions for any distribu-
tion of ground stations. The method for analyzing these cases was presented
in section 1.41 where the name '"'general singularity A)"" was also introduced.

MNext, ground stations are assumed to be in the plane z = 0.

Singularity A) with respect to any station except k and s’ would occur if
the corresponding satellite group contained only in-plane targets, the plane of

which would pass through that station. Singularity A) with respect to station
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k would be the same as in section 1.41 if there were no station &'; it would
occur if in addition to j lying in the plane m, station s’ 1aid in a straight line
with stations 1 and 2, or if it laid on the line £. However, with station & pre-
sent, singularity A) for station k would occur only if in addition to the above

conditions also the following equation held:

Xi-% Yy fYk Zy
Xo=% Yo-Yi Zz| = 0, (1.4-96)
p];// pf/, 0

where the p-terms are those of (1.4-93b); otherwise, this equation in terms of &’
has the same form as (1.4-13) in terms of s. It would be exactly the same equation

in terms of s (upon considering (1.4-93a)) if s’ were lying on a straight line given by

ys = 0.

In this case, (1.4-96) would hold if s’ were lying on a straight line with station 1

and 2 (i, e., y/=0), or on the line £ . When s’ is such that

ys' #0,

the discussion is somewhat longer. It will be convenient to replace the second
row of (1.4-96) with the row pertianing to station s’, since this row is assumed to
lie in the same row space according to the above stipulations. If the yx/ -
multiple of this new second row is added to the third row in (1.4-96), this

eguation can be rewritten as

X1~ X | Yy - l Zy
|
/ /
(5%, ) L | (Viey ) Lo '0l=0 (1.4-962)
) Y | Ve i
xs’y;’(&-xs”)ﬂ‘i ys'yd (Xs//_Xs/): X'V (Ye-Y ) +1;“ ys'ys”(ys”—ya’): 0
k

Clearly, (1.4-96a) holds whenever
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ys' = 0.

Otherwise its third row can be divided by y,'y# # 0, and the determinant expanded.

After some algebraic manipulations, it is obtained that

XS (Ve =Vs') ~ ¥ -XS) T %Y - X =0,
which is the equation of a straight line for station s’. This line passes through
stations k and s’ (as seen upon substitution for s); therefore it is exactly the line
4 to which s’ had been restricted. Thus it is seen that singularity A) for station
k occurs under the same circumstances as those derived in section 1.41; namely,
if in addition to the targets in j, lying in 7 each of the stations s’, s’ lie on the
straight line with stations 1 and 2, or on the line £. To complete the discussion,
singularity A) for station s’ will be also analyzed. First, a few notations will be
introduced: (X;, Y1, Z;) and (X;, Yg, Z5) will now be the coordinates of the (first)
two targets in j,’. If all the targets in j,” are lying in a plane through station s’,
such a plane will be denoted as 7’; the line of intersection between the plane 7'
and the plane of the ground stations will be denoted as 4’. Singularity A) for
station s’ will occur if in addition to the targets in jy/ lying in 7', also the follow-

ing relation holds:

Xy - X/ Y, -y Zy
Xa_Xsl YZ_YS/ Zz = 0.
(XkYa// -kas//)(x_s” —Xs/) (Xst// "ykxs”) (Ysﬂ "ySI) 0

Clearly, this can be true if

Xst// - kas” =0

is fulfilled, i.e., if station ' lies on the straight line with stations 1 and k.
Otherwise, the third row in the above determinant will be divided by (x.y,” -
- WXy) # 0, giving
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X =%y Y, -y Zy
Xa"xs/ Yz"Ysl Zz = 0,

Xs//"xs/ sf/—yg/ 0

which is the equation of the straight line for station s’. This line is exactly 4
and constitutes another case when singularity A) for station s’ could occur.
Conditions leading to singularity B) will also be treated in a way similar

to that in section 1,41, Namely, any row vector of the matrix F given by
(1.4-12) would have to lie in subspace V, given by (1.4~15), should singularity
B) occur. The rows of F pertaining to all stations except station s" were already
treated in section 1,41, They are in V; only if the corresponding stations lie
on the second order curve through stations 1, 2, 3, 4,k, in other words, if they
are on-curve stations. Still to be found are conditions for station &” in this
respect, Should its corresponding row in F lie in V,, the following would have
to hold:

f; &5 £

fkl sz fks = 0;

fy 3 12

this represents a second order curve for station . The coefficients of fs in

thig equation would all vanish under exactly the same conditions which lead to

Vs of (1.4-15) having dimension one. Such cases were assumed non-existent. If
s is replaced by any of 1,2,3,4,0r k, £/ is either a zero row or a linear combi-
nation of the rows fg, f, or fs’ according to (1.4-94). However, if station s’ isitself an
on-curve station, then its row is a linear combination ofthe rows fyand fr; under these
circumstances the above equation'would hold and the corresponding second order curve
or f,/ according to (1.4-94). However, if station s’is itself an on-curve station,
then its row is a linear combination of the rows f, and f;; under these circum-
stances the above equation would hold and the corresponding second order curve

for station & would also pass through stations 1,2, 3,4, and k. This leads to
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the same conclusion as was made in section 1,41: singularity B) occurs when
all the ground stations lie on the same second order curve.

For the practical discussion in this section, it will be assumed that the
satellite groups j,, j, and j,’ contain off-plane targets. Consequently, singular-
ity A) for stations k and s’ is antomatically eliminated; the necessary conditions
of this kind for non-singular X matrix are limited to those, specifiying that no
further satellite group is lying in the plahe through the corresponding ground
station. Necessary conditions for singularity B) remain unchanged, while the
row conditions are automatically fulfilled.

Finally, it will be examined when the assumptions about j,, }, and j,’
constitute also the sufficient conditions for non-singular X matrix. It can be

seen from the system (1.4-95) that

X

ag = aj T a5 =cg =0

it

and

X =

a' = a =3 =q =0,

since j, and j, contain off-plane targets., Since the a-coefficients for station k
are now zeroes and since j,/ also contains off-plane targets, it must further
hold that

ay = a)=a¥=c¢c/=0.

Withthese a-coefficients for station s it holds for station s and similarly for any

additional station i (if present):

~ 1
a’:/%/ + a-‘r;//";ss'// + ai//vi// + CE” s = (,
1

Now the a-coefficients for all the remaining stations must be zero (due to singular-

ity A) eliminated) only if all the remaining c-coefficients are equal to zerc as
the only possibility. But this happens only if those rows of F whose c-coefficients

are zero can form a submatrix with full rank. When no further satellite group
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contains off-plane satellites, this would imply that
(gl £2 12
rank | £} £2 £2 | = 3.
£ £ £
Then all three b-coefficients and all the c-coefficients would have to be equal to
zero. The above relation stipulates that station s’ must be an off-curve station.
With more stations observing off-plane satellites, at least one of them would
have to be an off-curve station.

This section can be concluded by summarizing the necessary and sufficient
conditions for a non-singular %X matrix when stations 4,k, and s’ observe off-
plane targets: 2 is non-singular if in the absence of singularity A),station s’ (or
further stations - besides 4, k ~ observing off-plane targets) is an off~curve

station,

1.43 More than Two Replacements.

If six ground stations form a non-singular network which is to be expanded,
then the new network is in general also non-singular. The sufficient conditions
that it be so is that singularity A) is eliminated also for any additional station,
and that no satellite point is lying in the plane of ground stations. The fact
that the network remains non-singular no matter how many stations are added
and no matter how many replacements are carried out can be visualized in a
gimple manner. Let thev ground stations observe their respective satellite

groups in the following fashion:
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3 2 1 k oo k Non-singular
2 1 k s s
: : (1.4-97)
1 k s & i
: ;= : ~ Singularity A) avoided

There canbe any number of stations and replacements in the above illustration.
The network consisting of six stations, e.g., of stations 1, 2,3,4,k,and s'(stations 4,
k, and s observe off-plane targets), is the smallest possible for a non-singular solution
(toavoid singularity B) morethan 5 stations areneeded, andtoavoid singularity C) at
least three stations - understood as each representing a quad - should observe
off-plane targets). Assuming the block containing stations 1,2, 3,4,k, and s’ to
be non-singular, each of these stations can be uniquely determined; any three
of them, coéobserving with some new station, are able to determine the coor-
dinates of any target (provided it does not lie in a plane with them). But since
the new station does not lie in a plane with these targets, it can be uniquely
determined from them. Thus, the number of known ground stations has been
increased and the same argument may be repeated.

In the illustration (1.4-97), the original non-singular part of the network
was obtained using one réplacement (namely, station k replaced station 2).
Naturally, a similar network of six ground stations could be obtained without
replacements (i, e., three ground stations could observe all the targets as
discussed in the early sections). However, when the first replacement is
carried out, the network necessarily consists of at least six ground stations. There-
fore, one replacement is of fundamental importance and deserves much attention.
That was the reason behind an extensive treatment of all its aspects in section

1,41. It may be of interest to mention a type of problem when the network is
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singular with three stations (assumed to be 1,2,3) observing all the targets,
while with replacements of stations it becomes non-singular. Suppose that
singularity A) for station k occurred in the former case (all the targets in ji
laid in 7), and suppose that station k replaced station 2. Then, however,
singularity A) for station k would occur only if in addition to the above property
of jx station s’ 1aid on the line 4 or j¢laid in 7. Otherwise singularity A) is
removed.
Although the sufficient conditions for non-singular networks for two or
more replacements are simple to state and plausible without derivations, some-
what detailed procedure for two replacements was presented in section 1.42.
Considering the practical cases (such as js, jx, and j¢’ containing off-plane tar-
gets), the results supported the theory and illustrations in this section. Con-
cretely, the éonditions stipulating that singularity A) must be eliminated and
that station s must be an off-curve station, summarized at the end of section
1.42, guarantee that the part of the network presented above the horizontal line
in (1.4-97) and corresponding to one replacement is indeed non-singular; con-
sequently,these conditions make further expansion of the network possible.
From the theoretical point of view,the necessary conditions for two replacements
in section 1.43 were given regardless whether one replacement was possible or
not, i.e., with no assumptions concerning the groups ja, jx,» and j¢’. In this con-
text it would be possible to have a singular network with one replacement, namely,
if the targets in j/ lay in 17', while with two réplacements singularity A) for
station s’ would be removed if station s  did not lie on 4’ and jo did not lie in .
From the purely practical point of view, the derivations in the part of section
1.41 following section 1.411 and those in section 1.42 were not absolutely needed,
since in general a large number of satellite points can be observed from any
guad and they most often do not all lie in,. or nearly in one plane, much less in
a plane through a specific ground station. The configurations of ground stations -

as their number is limited - appears to be much more important. Many of the
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derivations were mainly of academic interest and they were made for the sake
of completeness; occasionally, however, they could be put in use, especially
when the number of targets is limited.

In conclusion, this section can be summarized by saying that any non-
singular network can be successfully expanded, the sufficient conditions being:
no target should be in the plane of ground stations and singularity A) should be

eliminated also for each further station. The smallest non-singular range network

can consist of no less than six ground stations. In case of replacement of sta-
tions (leading to '"leapfrogging'), the first replacement can result in a non-

singular network and is therefore of fundamental importance.

1.5 Numerical Examples and Verifications of Theory.

Most of the numerical solutions were carried out during the first part of
this study, dealing with ground stations in a plane and three of them observing
all the targets. With exception of Example 2, all the points (stations and tar-

-gets) were generated in an arbitrary coordinate system; the data was also
generated (mostly with attached random errors), whenever it was judged appro-
priate. In many instances, however,only the trace of the weight coefficient
matrix (inverse matrix of normal equations, N*)was needed as an indicator of
critical configurations (singular problems). In all the examples, the coordinate
system was chosen the "best" possible way in order to eliminate undue numerical
difficulties and large uncertainties in the adjusted parameters (reflected in the
large trace of N*), due to poor definitions of the coordinate system. These
aspects are treated in [16] where the constraints which materialize the
'""best" coordinate system are given explicitly with respect to all the points of a
cluster to be adjusted or a chosen subset of these (e.g., the ground stations). If
Q represents the whole matrix N or its part corresponding to the chosen subset
of points, then these constraints, called inner adjustment constraints, have the

property that they render
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Tr(Q) = minimum, (1.5-1)

as compared to any other set of constraints defining the coordinate system differ-
ently, Consequently, if the matrix N* indicates that a network to be adjusted is
singular or nearly singular, it may be inferred that this is due to the critical
distribution of points rather than to a weak definition of the coordinates system.
The adjustment method used in all the problems was the method of variation of
parameters in the least squares adjustment, called also "A method" (see [5 ]).

In many generated problems only the necessary number of observations were
used, so that the solution for the parameters could be obtained without forming
the normal equations. But since Tr(N™) was of the main importance in the type
of analysis presented in this section, the normal equations were formed,
bordered with the inner adjustment constraints and inverted. Unless otherwise
specified, these constraints are given with respect to all the points of a network
to be adjusted. If the notation Tr (N?)gr is used when the results are presented,
the trace of only that portion of N * is given which corresponds to the ground
stations alone,

For the numerical solution of a number of problems, certain points were
used repeatedly and are presented in Table (1.5-1). The ground stations are
denoted by the numbers between 1 and 7, while the targets are designated with
numbers higher than 150, As it can be observed from the table, the ground
stations are lying in one plane and the targets; grouped by three, are lying on
specific straight lines, with exception of 191, 192, 193 which are in general
configuration. All the coordinates are given in meters,

The observation equations for adjustment of different range networks were
generated in a program called Auxiliary range program. The input for this
program had to contain the coordinates of all points in the network as well as
the parameters specifying up to which point the observations are generated on a

one~to-one basis, the nature of observations (errorless, etc.), number of
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Table (1.5-1)

Cartesian Coordinates of Some Generated Points

Point X y z

1 -100, 000. ~150, 000, 0.

2 1, 000, 0QO0. ~200, 000., 0.

3 300, 000. 1,400, 000. 0.

4 1,200, 000. 1,700, 000, 0.

5 1,500, 000, 1, 300, 000, 0.

5 700, 000. 1, 300, 000. 0.

7 600, 000. 350, 000, 0.

151 500, 000. ~200, 000. 1,000, 000.
152 500, 000. 500, 000, 1, 000, 000.
153 500, 000, 1,200, 000. 1, 000, 000.
161 1, 200, 000. 500, 000, 1,600, 000,
162 500, 000, 500, 000, 1, 600, 000.
163 ~200, 000. 500, 000, 1, 600, 000.
171 200, 000, 200, 000, 2, 000, 000.
172 800, 000. 800, 000, 2, 000, 000.
173 1,400, 000, 1,400, 000. 2, 000, 000.
181 100, 000. 900, 000. 1,500, 000.
182 600, 000. 900, 000. 1,500, 000.
183 1, 000, 000. 900, 000, 1,500, 000.
191 200, 000, '-500, 000, 1,050, 000.
192 -650, 000. 600, 000. 1,400, 000.
193 1, 200, 000, 1,050, 000, 800, 000,
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ground stations and satellite points, the nature of the inner adjustment constraints,
if any (for all the points or the ground stations only), and some additional characteristics.
The punched output consisted of the coefficients for the matrix of observation
equations and constraints, and of the constant vector of observation equations.

This represented the input to an adjustment program, called A method program.
Input parameters for this program specified among other things the actual geom-~
etry of the network which was to be adjusted, since all the possible range obser-
vations were made available by the Auxiliary range program. Thus, when delet-
ing different number of different observations, many problems could be solved
using the same input deck. The weight matrix for the observations was stipulated
to be a unit matrix in all cases. The judgment on singularity or non-singularity

of a particular problem was based on different numerical checks indicating the
validity of the solution (in many cases no redundant observations were used and
therefore, the residuals had to be theoretically equal to zero). Correlation co-
efficient matrix was also considered in all investigated cases as well as N

matrix and its trace. Of these, Tr (N’l) and sometimes Tr (N'l)gr will be presented
in the following examples, as they are expressed by a single number.

Example 1. A special network of four ground stations and eight targets was
generated in order to examine the behavior of the adjustment when the ground
stations gradually depart from a plane. The targets used in this example are:
151, 152,153; 161, 162, 163; 171, and 172; their coordinates are presented in

Table (1.5~1). The x and y coordinates of the four ground stations, denoted as

I,II, I, TV, are given as

I: x=0 y=20

I: x=20 y = 1,000,000
III: x=1,000,000 y=0
Iv: x=1,000,000 y = 1,000, 000.
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The z-coordinate of I, TI, III is equal to zero, while for IV it is varying between
zero and 500km. When it is zero, the problem is necessarily singular. Alto-
gether, seven cases are presented in Table (1.5-2). The column with the head-
ing "d" gives the average distance between the four ground stations and the best
fitting plane; the heading "4" represents the average length in the quad I, TI, 111,
IV (on a one-to-one basis). The last column gives the ratio d/4, which can serve

as a certain plausible measure of expected "'goodness' of an adjustment.

Table (1.5-2)
Different Configurations of Stations I, II, ITI, IV,

Case z (km) d (km) £ (km) d/4
1 0. 0.00 1,138, 0. 0000
2 10. 2.50 1,138. 0. 0022
3 25. 6.25 1,138. 0. 0055
4 50, 12.49 1,138, 0.0110
5 100, 24,94 1,140. 0.0219
6 200, 49.50 1,147, 0. 0432
7 500. 117.07 1,192, 0. 0982

The results of the adjustment are given in Table (1.5-3). The firsttwo columns (be~
yond case numbers) give Tr(N ") and Tr(N*)gr when the inner adjustment constraints are
used with respect to all the points of the network (i.e., eleven points), while the following
two columns give the same values when the inner adjustment constraints are

used with respect to the ground stations only (four points). The number of
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degrees of freedom (d.f.) for all the cases treated this way is one. In the last
two columns, the results are given when all the possible observations (on a one-
to-one basis) are used in the otherwise unchanged network; the inner adjust-
ment constraints used in this part are those with respect to all the points of the
network. The a-posteriori standard deviation for this part, denoted as g, is also
given; it appears in the last column. Since the random errors generated by the
library subroutine and attached to the errorless observations came from the
normal distribution with zero mean and unit variance, the a-posteriori standard
deviation is not expected to depart from unity by a great amount. The pro-
blem denoted as case 1 is singular when only ground-satellite observations are
considered. Numbers on the diagonal of N* are extremely large and negative,

As a matter of fact, case 2 is nearly singular with the results invalidated by

Table (1.5-3)
Results from the Adjustment of the Generated Network

Constraints: All Points {|Constraints:Stations Only
Case Tr(N") | Tr(NYgr Tr(NY) | Tr(NhHgr |Tr(NH)| &
1 10.995 | 1.01
2 3,879,000} 1,667,000 || 3,766,000 | 1,558,000 }10.989 | 1,08
3 579, 000 249, 000 592, 000 244,000 |110.981|1.05
4 141,700 60, 880 145,500 59,830 || 10.968 | 1.23
5 34, 320 14,720 35,650 14,420 [110.944 | .85
5 8,085 3, 447 8,760 3,358 } 10,903 .94
7 1,130 462 1,404 437 §110.8301 .98

numerical problems. This is also apparent from the above table, where Tr (N'l)
for the inner adjustment constraints (first column) for all the points is actually
larger than its counterpart (third column) where these constraints apply only

to the ground stations, which is obviously wrong. For cases 3-7, this relation

is correct, while the relation for Tr (N *)gr is opposite (i.e., the numbers in
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the second column are larger than their counterparts in the fourth column). When
all the possible observations are used,the adjustment in all cases appears to be
very strong. As illustrated in Appendix 1, an improvement in the solution was

to be expected due to the new observations which were added to an existing net-
work. In this adjustment the results for Tr(N’l) improve very little when station

IV moves away from the plane of stations I,II, IIL.

Example 2. In this example, several quads of the Pacific network, presented
in [2 ], are adjusted separately. These quads are denoted by small letters, while
the stations are represented by the same numbers under which they appeared in

[27]. The correspondence between the quads and the stations is listed below:

. 1,2,3,4
b... 4,5,6,7
c... 3,7,8,10

d... 3,6,7,8
f...2,3,5,6
g...2,3,4,5.

Dﬁe to the A method program limitations, only ten satellite points were chosen
for each quad to be adjusted. They were selected to be as well distributed and
representative as possible. In order to visualize the relations between Tr (N ™)
and the relative distance of one quad's points from the best fitting plane, the
results were arranged in the Table (1.5-4) in a fashion similar to Example 1.
From the table it appears that larger distances from the plane that 4% of ground
distances would be necessary to obtain fairly strong solutions for individual
quads. This would imply larger quads and/or different distribution of the
ground stations. In order to evidence the improvement in Tr (N*)gr when the
inner adjustment constraints are used with respect to the ground stations only,
quad f was also adjusted this way. Both cases are presented in Table (1.5-5)

for comparison. Naturally, all the residuals must be theoretically the same no
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Table (1.5-4)

Quads of the Pacific Network

Ave. Dist Ave. Distanc Ratio of the || ni, for*

Quad [ Ve istance ve. DIstance Previous 2 || Ground | TrN%)

From Plane | Between Points .

Columns Stations

a 36.40 km 1,672 km . 0218 2,376 39,391

b 73.91 2,327 .0318 650 | 11,833

c 44 .66 2,746 .0163 27,587 133,215

d 92.26 2,884 . 0320 305 3,828

f 65.03 1,835 . 0354 156 4,887

g 11.97 1,530 .0078 19,598 |878,172

. . -1 .
* n'! represents ith diagonal element from N™ matrix

matter which definition of the coordinate system is adopted.

Table (1.5-5)
Quad f Using Different Sets of Inner Adjustment Constraints

Inner Adjustment ni. for N 1
Constraints for: Ground Stations Tr(N7)gr Tr(N7)
all points 156.0 ‘ 740 4,887
ground stations ' 111.6 502 5, 847

To visualize possible increase in strength of an adjustment of one quad by
changing its shape (and, thereby, the average distance from the best fitting
plane) without enlarging its size, further experiments were performed with
guads ¢ and g, which previously had the weakest solution. In quad ¢, station
10 was displaced to occupy the middle area of stations 3,7 and 8. 1t was chosen

to have the coordinates ¢ = 10° and \ = 180° (this corresponds approximately to
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x =-6,281,500; y =0; z=1,107,600). In quad g, station 5 was chosen to

have the coordinates ¢ = -3° and A = 163° for the same purpose. These two new
quads were then adjusted (using the same sets of satellite points). The results of
this adjustment are presented in Table (1.5-6), which is organized in the same

way as Table (1.5-4). From this table it is seen that while the "ratio” values

Table (1.5-6)
Modified Quads ¢ and g of the Pacific Network

T . i1
Ave, Distance Ave. Distance Ratlo.of the || 1, for ],
Quad . Previous 2 | Ground Tr(N™)
From Plane Between Points .
Columns Stations
c 74.81km 2,212km . 0338 1,848 23, 343
g 23.34 1,190 . 0196 2,040 65, 938

improved in both cases two to three times, the values of Tr(N'l) improved approx-
imately six times and ten times. With this type of planning even such networks
which consist of only four ground stations can be successfully adjusted if they
extend over a relatively large territory, especially if many more satellite points
are observed as it occurs in praétice.

Example 3. In this example mainly singularity B) is illustrated. The
stations denoted as 1 through 5 and given by their coordinates in Table (1.5-1}
define a second order curve - ellipse in this case - which can be computed
using the method given in section 1.322. Namely, its center and the end points
of its semi-axes can be obtained in x,y coordinates. The sixth point, station 6,
can be then chosen on-curve or off-curve at certain intervals, in order to study
the behavior of the adjustment in such cases (the targets remain the same). The
center and the four main points of the ellipse fitted to stations 1through5 are denoted as

follows:
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Center of the ellipse .. X

One end point of its semi-major axis .. . ta
The other end point of its semi-major axis . . . -a (1.5-2)
One end point of its semi-minor axis . . . th

The other end point of its semi-minor axis . . . -b.

The position of station 6 in this example is varied, moving at the intervals of 2
on the minor axis and at the intervals of % on the major axis (here a, b denote the
lengths of the semi-major and semi-minor axes). In this procedure, the sign
indicates the direction in which station 6 is being located with respect to x;
e.g., +% represents station 6 lying midway between the points x, and +b. When
it does not coincide with any of the points in (1.5-2), the location of station 6
is given only to a certain approximation. Altogether, station 6 occupies
eleven different positions; the corresponding adjustment problems are
denoted as case 1 through case 11.

The above eleven cases are treated in three different categories, and in

each category stations 2, 3, and 4 observe all the targets, These categories

differ according to the number of stations observing simultaneously. In category 1
four stations are co-observing, in category 2 five stations are co-observing,
and in category 3 all six stations are co-observing.

Category 1 corresponds to observing in quads, with the total of three quads;

the three corresponding satellite groups are denoted as j;, jz, and j; and they
are lying off-plane in all eleven cases. Each of these satellite groups

contains four targets, whichmakes the solution possible with no redundant
observations (altogether there are (6 + 12)3 = 54 unknowns and 3 x 16 = 48
observations with 6 constraints, giving d. f. = 0), The twelve targets used in
category 1 are the ones listed as 151-183 in Table (1.5-1); they form the

three satellite groups in the following way:
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... 151, 152, 171, 183
i . . . 161, 162, 173, 181 (1.5-3)
is . . . 153, 168, 172, 182,

The observations are organized as given below:

1 2 3 4 U S
2 3 4 5 c e 2 (1.5-4)
2 3 4 6 ... s

In addition to the above eleven cases, category 1 contains also two additional
cases, denoted as case 12 and case 13; they were designed to illustrate singu-
larity A) and singularity C), respectively. In both cases the coordinates of station
6 are the same as in case 1 and the coordinates of satellite points 152, 171, and
183 were changed so that in case 12 j contains targets lying on a straight line
and in case 13 j, contains targets lying in one plane. The new targets for case 12

denoted by primes, have the coordinates:

152 ... 0 300, 000. 1,350, 000.
171’ ... -380,234.5 680, 234.5 1,616,164, 2
183" ... -633,724.2 933,724, 2 1,793, 607. 0

The new targets for case 13', denoted by double primes, have the coordinates:

152" ... 0 300, 000 1, 350, 000.
171" 800, 000 150, 000 1,420, 000.
183 ... 600,000 700, 000 1,899, 230.8

Category 2 requires that only two satellite groups be formed. 1In this category
only eight targets are used (151-172), which makes the d.f. = 4, The observa-

tions are arranged as follows:
1 2 3 4 5 . .. 151, 152, 161, 172
1 2 3 4 6 ... 153, 162, 163, 171.
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If the observations were arranged in quads with the two satellite groups denoted

respectively as j; and js, this category could be represented with respect to A

matrix as
1 2 3 4 R
1 2 3 5 see 1
1 2 3 6 ...Jz

where js is obtained by merging j and js. This representation corresponding to
Table (1.3-1) serves only for theoretical analysis, since the stations denoted as
1,2, and 3 observe each target only once.

Category 3 requires only one satellite group,which in this case contains the
same eight targets (151-172) as presented in category 2; this makes d.f. =12
there are (6 +8)3 = 42 unknowns and 6 x 8 = 48 observations with 6 constraints).
With respect to X matrix, the observations in this category can be thought of as

being arranged in the following way:

1 2 3 4 ...
1 2 3 5 .eeds
1 2 3 6 ...5a-

Clearly, all the satellite groups here coincide, since all stations are co-observ-
ing. Again, since any of stations 1,2, and 3 observe each target only once
(rather than three times) this arrangement corresponding to X matrix serves
only for the theoretical analysis (unless proper weighting is applied).

The results for all three categories in all eleven cases (thirteen cases for
category 1l)are presented in Table (1.5-7). This table illustrates when singularity
occurs and how Tr(N-l) behaves in singular cases. The best results in all cate-
gories are obtained in case 2, when station 6 coincides with X, the center of

the ellipse. The second best result is reached in case 1, when station 6 coin-
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cides with the point + %. As expected, the results are getting worse in the
vicinity of the critical curve, as seen in case 8 and in case 10. Case 12 and

case 13 in category 1 are singular as expected. Singularity C) also occurs
whenever one of the three satellite groups contains only three targets (necessarily
in plane), independently of the number of targets in the other two groups. It is
also clear that significant improvement occurs when five stations rather than

four observe simultaneously, as evidenced in category 2. Further drastic im-
provement is to be expected when six ground stations co-observe, judging by

the results in category 3.

Table (1.5-7)

Results of Adjustment in Three Categories with
Ground Stations in Plane, Critical Curve Being Ellipse

casel station ¢ [-Co0rdinates: Station 6 Il Tr(N') categories: Singularity
b:4 v 1 2 3
1 + o 340, 000 790,000f 60,530 22,100 387
2 X, 680, 606 630,724| 51,260| 15,300| 275
3 -3 1, 020, 000 470, 000|124, 300 | 42,000| 437
4 -b 1,361, 060 301,806 -.6x10%|-.5x10%|-4x10° B)
5 -3 1,710,000 130, 000(214,600| 57,900| 681
6 -2b 12,060,000 -30,000] 95,980| 21,900| 400
7 -3 500, 000 250,000 89,010| 28,800| 278
8 -2 330, 000 -90,0001369,200 {115,100 | 474
9 -a 163,256 | -439,546{-.3x10%|-.4x10%|-3x10° B)
10 - 48 o -780, 000 || 860, 000 | 195, 000 |1, 602
11 - 52 -170,000 {-1,120, 000 323,200| 65,300 855
12 +5 same as case (1) -.9x10° A)
13 +3 same as case (1) -.5x108 C)
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Example 4. Similar experiments to those in Example 3 are performed

with the critical curve being now a hyperbola. The difference between these

two examples consists in the fact that station 5, given in Table (1.5-1), rather
than station 5 is used to define the critical curve; The letters a and b now
pertain to the real and imaginary axes of a hyperbola as opposed to (1.5-2),
where they were associated with the major and minor axesofanellipse. Allthe
other aspects are the sameas inthe previous example, except that category 1ismiss-
ing. The remaining results are presented in Table (1.5-8). The results inthis table

bear certain resemblances to those listed in Table (1.5-7); ingeneral, however, they

appear tobe somewhat inferior. When station 6 coincides with x, inthis example, the

Table (1.5-8)

Results of Adjustment in Two Categories with
Ground Stations in Plane, Critical Curve Being Hyperbola

Case | Station 61L Coordinates:Station 6 Tr(N'l)categories: Singularity
X y 2 3
1 +2a 590, 000 | 1,790,000 9,300 674
2 +32 570,000 | 1,530,000 {f 51,800 1,186
3 +a 553,768 | 1,273,890 || -.2x10° | -,2x10° B)
4 +3 535,000 | 1,010,000 }j 275,800 4,199
5 X, 519, 344 744,236 || 206,700 3,302
6 -% 500, 000 480,000 || 479,200 6,104
7 -a 484,921 214,584 || -.6x10° .2x10° B)
8 - 32 460, 000 -50,000 | 321,600 1,549
9 -2a 445,000 -310,000 || 85,100 425
10 +b 132,471 769,380 || 57,100 719
11 -b 906,218 719,092 || 66,200 1,141
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solution is quite weak; the best results now correspond to the points +2a, -2z,
and + 32, The assymetry of the results in cases 1-9 is natrually due to the
distribution of the targets, which are not symmetrical with respect to the hyper-
bola.

Example 5. Two cases from Example 3, category 1 are further
modified. They are case 1 and case 9. First, in case 1 station 4 is

moved from the plane of ground stations upwards by 100km, i.e.,
z, = 100,000,
With everything else unchanged, this results in
Tr(N?') = 34,180,
If station 6 moves the same way instead of station 4, i.e., if
Zg = 100,000
then it is obtained that
Tr(N') = 77,570.

These two modifications do not cause any remarkable changes in the quality of
the solution, If, however, the same two modifications are applied to case 9

which was singular, the following results are obtained:

Tr(N™) = 1,406, 000

Tr(N?) = 1,727, 000.

The solution is quite weak, but the singularity has been removed. If the first

modification is made by 200 km rather than by 100km, i.e., if
z, = 200,000
then the solution further improves; namely,

Tr(N?) = 400, 100.
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This solution is nearly as strong as the one given in case (8). In this particular
example, moving station 4 by 200km in the vertical direction from the plane
helps to strengthen the solution approximately as much as moving station 6 by
400 km in the plane of ground stations toward the center of the ellipse.

Example 6. Having the same satellite groups as in category 1 of example
3, replacing of stations is illustrated with the same position of station
6 as in case 1. The three satellite groups were presented in (1.5-3). The

observations are now arranged in the following way:

1 2 3 4 e B
2 3 4 5 e e (1.5-52)
2 3 5 6 ... ja

Comparing this with the original observations given in (1.5-4), it is seen that
station 5 replaced station4 (formerly observing all the targets) with respect to

the satellite group js. An adjustment gives:
Tr(N*) = 70, 320;

this result is only slightly worse than the corresponding result (category 1, case 1)
from Table (1.5-7), which gives the trace as being equal to 60,530. If the obser-

vations of the same case are arranged another way, namely

1 2 3 4 c
2 3 4 5 cie s (1.5-5b)
3 4 5 6 ...is

then it is obtained that
Tr(N™*) = 149, 000,

In this arrangement station 5 replaced station 2.
Similar computations may be made using seven ground stations (four of

them co-observing) and fifteen targets. This gives again only the necessary
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number of observations., All the stations and satellite points used in the previous
two arrangements remain the same and one ground station with one satellite
group are added. Station 7 with the coordinates listed in Table (1.5-1) is the
added station and

jo - . . 191, 192, 193

is the added satellite group; the coordinates of its targets are listed in Table
(1.5-1) as well, The first arrangement in this part is a continuation of the net-

work represented in (1.5-5a), namely

1 2 3 4 i
2 3 45 - e (1.5-62)
2 3 5 6 ... i
2 3 4 7 i

The adjustment of this network yields
Tr(N?) = 116, 700.

Similarly, the second arrangement results from expanding the network of

(1.5-5b), namely

4 - h

2 3 4 5 . s (1. 5-6D)
3 4 5 6 .. s
4 5 6 T ...1

From the adjustment of this network it is obtained:

Tr(N*) = 277, 800.
The arrangement of observations in (1.5-6b) is a typical case of "leapfrogging''.
Since the first replacements in (1.5-52a) and (1.5-5b) resulted in non-singular

solutions, the sufficient conditions for both (1.5-6a) and (1.5-6b) to form non-

singular networks are given by stipulating that the satellite gourp j, does not
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have any targets in the plane of ground stations (z = 0), and that those targets
do not lie in the plane through station 7. Since both these conditions are fulfilled,
the adjustment of (1.5-6a)and (1.5-6b)yields non-singular results (larger traces were
caused mainly by larger N matrices due to twelve additional parameters).

Example 7.  This last example illustrates that singularity A) can be
removed when replacing of as:tations is applied. Since singularity A) is not likely
to happen in practice, this example is mainly of theoretical interest. Originally,
singularity A) was achieved by modifying the satellite group j, and station 7 so
that they form a plane. The points which were modified, denoted by primes,

are given as

7 ... 300,000, 0 0
193’ ., .. -247,462.4 350,000 800,000

The observations resulting in singularity A) are arranged in the following way:

1 .
. )2

6 P
(A

3

L W L W
N
(&3]

2
2
2
2
the adjustment gives

Tr(N') = .7x10°

Next, station 7’ replaces station 4 (previously observing all the targets) for

observations of the group js. This new arrangement is presented below:

1 -k

2 4

2 4 5 ...z
2 4 (AP W
2 7

w W W W

! 6 A
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The adjustment gives in this case:
Tr(N*) = 675, 300.

Even though j,/ (i.e., j in terms of section 1, 41) lies in the plane through 7’
(i.e., k), station 6 (i.e., s) does not lie on the intersection of this plane and the
plane of ground stations (i.e., the line £). Accordingly, singularity A) was
removed.

As a matter of fact, further replacements can be applied and the final arrange-
ment may be such, that three different stations observe all the targets. If station
7’ is one of them, singularity A) is again removed: there is no condition
which stipulates that no satellite group can be in plane with one of the three
stations observing all the targets. Consequently, another adjustment was made
with the observations arranged as follows:

I

1 2 3 7 - h
2 3 7 4 ... s
2 3 7 5 ... s
2 3 7 6 . .. i

The results in this case are such that
Tr(N?) = 216,100.

In other words, when stations 2, 3, 7’ rather than stations 2, 3, 4 observe all the

targets, singularity A) due to j,’ and 7’ lying in one plane is removed.
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1.6 Conclusions

In the past sections a rather detailed analysis has been carried out for the
range observations. The ground stations have been assumed to be lying in one
plane. They were denoted by numbers and letters in the sequence 1,2,3,4,...
i..., k, s', s”, ..., while the satellite groups observed by these stations were
denoted 28 jay « e« Ji cees Jus Js'» J&’ ..., respectively. A satellite group consists
of those satellite points (targets) which aré observed by a given quadrant (quad)
of stations. The convention used for the subscript of a certain satellite group is
such that the index indicates the number or letter of that station in the quad observ-
ing this satellite group which has not observed any other satellite group and/or
which ig listed as the last station in the quad; for example, the quad consisting of
stations 1,2,3, and 4 observes the satellite group js. The division of a network
into quads is convenient from the practical point of view. Considering more than
four co~observing stations does not affect the derivations made with the above
concept.

The discussion is divided into two basic parts, according to whether the
number of ground stations observing all the satellite points is three or more, or
less than three. When the number of stations observing all the targets is less
than three the principle of replacing of stations (station replacement) is introduced,
which leads directly to the concept of '"leapfrogging'. Both concepts, the first,
dealing with at least three stations observing all the targets, and the second, deal-
ing with replacing of stations lead to similar conclusions. The most important
conclusion is that except for certain critical configurations of points (stations or
targets or both) an adjustment of range networks gives non-singular results, in
gpite of the fact that all stations are in one plane., The network which can be non-
singular with the smallest number of ground stations possible is said to constitute
a fundamental unit. When at least three stations observe all the targets a funda~-

mental unit consists of six stations. When the principle of station replacement
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is utilized a fundamental unit is also six stations, except for one specific cbserv-
ing pattern when the number of required stations is seven.

When three stations denoted as 1,2,3, are observing all the targets, the
necessary and sufficient conditions for a network to be non-singular are easy to
specify. One of the configurations which makes an adjustment singular is the
case when all the targets in one satellite group needed for the determination of
a fundamental unit are in a straight line. This is only a special case of a general
pattern when all satellite points within a group (e.g., ji) are in the plane contain-
ing the corresponding ground station (i). This case, called singularity A), is
illustrated in Figure 1. In a more general sense, singularity A) is said to occur
when all targets observed by a certain station - and such targets may be contained
in more than one satellite group - are in the plane with this station. When exactly
three stations (1,2, 3) observe all targets, the targets observed by any particular
station besides 1,2,3, are all contained in one satellite group. Under the assumpt-
tion that singularity A) does not exist the necessary and sufficient conditions for
a network to be non-singular are such that at least three stations in addition to
those three (1,2, 3) observing all the targets must observe targets which are not
all in one (general) plane (off-plane targets) and that these three stations must
not lie on one second order curve with stations 1,2,3. If these conditions are
not fulfilled it is said that singularity C) has occurred; such configuration of
points is illustrated in Figure 3. A special case of singualrity C) is singularity B)
when all the ground stations are on one second order curve (Figure 2). From the
above conditions it is seen that a fundamental unit consists of six ground stations.
If such a fundamental unit exists, it is always possible to expand a network by
adding further stations and satellite groups, the necessary and sufficient condi-
tions being that no target should lie in the plane of the ground stations and that
no station should lie in a plane with its observed targets.

If all ground stations are co-observing, then singularity in a network could
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occur only if all the stations are on one second order curve, or if all the targets
(in this case all the satellite groups coincide) are lying in one plane. These two
cases are illustrated in Figures 4 and 5, respectively. Otherwise, the solution
is non-singular. Numerical results indicated that when all the stations observed
simultaneously the solution was strengthened very significantly.

When dealing with the concept of station replacement, it is concluded that
one replacement (leapfrogging) can be sufficient to build a fundamental unit,
from which further expansion is possible under certain conditions. Therefore,
2 zreat deal of time was devoted analyzing the problem of one replacement where
the fundamental unit is assumed to comprise of stations 1,2,3,4, and the satellite
group j, to contain off-plane targets. After two quads (formed by stations 1,2,3,
4, and stations 1,2, 3,k) have completed their observtions, the first replacement
will take place. It consists of station k replacing station 3 for the next observa-
tions. The satellite group js’ is then observed by the quad of stations 1,2,Kk, s’,
ete, At this point, the discussion is divided into two parts: in the first part
the satellite group k contains off-plane targets; in the second part,which is
rather special and mainly of theoretical interest, the targets in j, are in one
plane. It is true for both parts that a network is singular if the targets in any
of the satellite groups (including j. in the second part) needed for the determina-
tion of a fundamental unit are in a straight line. This conclusion is similar to
what was mentioned for three stations observing all the targets. It is again
assumed that no satellite group lies in a plane passing through the corresponding
gtation. Thus,singularity A) cannot exist. The cases denoted as (a2), (b2),
and (c2) in section 1.412 or 1.413 are not considered in the second part, since
in these three cases the satellite group jx was assumed to contain targets lying
in one plane with station k.

With the above assumption, the necessary and sufficient conditions for a

non-singular solution in the first part (jx containing off-plane satellites) are
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similar to those given for three stations observing all the targets. Namely, the
network is non-singular if there is at least one more satellite group(in addition
to ja and jx) containing off-plane targets and if the corresponding station does
not lie on a second order curve with stations 1,2,3,4, and k. In other words,
at least three stations not lying on a second order curve with stations 1,2,3
must observe off-plane targets. Therefore, a fundamental unit in this part con-
sists also of six ground stations.

The second part, rather artificial,deals with such cases when the satellite
group jx is composed of targets lying all in one plane (assumed not to pass through
station k). The necessary conditions for a non-singular network stipulate that
there must be at least two additional satellite groups (besides j4) which contain
off-plane targets. Consequently, a fundamental unit in this part includes seven
ground stations (i.e., two stations in addition to stations 1,2,3,4, and k). The
two satellite groups of the required property can be chosen in three different
ways which in section 1.412 or 1.413 were presented as cases (al), (bl), and (cl).
In case (al), these two satellite groups correspond to stations s"and s’ {both
following station k); a network is singular if the plane of jx has a specific position,
given by (1.4-49) and (1.4-50), or if both s’ and s’ are lying on a second order
curve through stations 1,2,3,4 and k. In case (bl), one of these groups corre-
sponds to some station i and the other to some station s (in sections 1.412 and
1.413 they were numbered as station 5 and station s'); a network is singular if
the plane of j, has a specific position, given by (1.4-82) and (1.4-82a), or if both
stations i and s are lying on a second order curve through stations 1,2,3,4,k, or
(in case station i does not have this property), if station s is lying on a specific
second order curve with stations 1,2,3, and 4 given by (1.4-70a) - (1.4-70c).

In case (cl) both satellite groups correspond to some stations i; a network is
singular if these two stations are lying on a second order curve with stations
1,2,3,4. If the circumstances leading to singularity in the cases (al), (bl),

and (cl) are avoided, then the above necessary conditions are also sufficient for
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a non-singular network.

If the first replacement is successfully carried out, then the resulting
fundamental unit can be expanded to become a larger, non-singular network.
When new stations and satellite groups are added to it, the necessary and suf-
ficient conditions for the new network to be non-singular are the same as those
for similar enlargement when three stations observed all the targets; namely,
no target should be in the plane of the ground stations and no station should be
in a plane with its observed targets.

The main results of this section are summarized in Table (1.6-1).

Since the number of ground stations is always relatively small compared
to the number of targets, the most important conclusion is that ground stations

should not be distributed on or near a second order curve.
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EV1

Table (1.6-1)

Necessary and Sufficient Conditions to Avoid Singular Solutions

When All Ground Stations Are in a Plane

Type of Arrangement of |[Necessary Conditions to Sufficient Conditions Note
Singularity Observations Prevent Singularity to Prevent Singularity

Singularity A) No station should be in a plane | No station should be in | This singularity is
(or closely re- Any with all its observed targets a plane with the corre-| assumed non-existent

lated singularity)

(distributed over one or more
satellite groups)

sponding satellite
group

in analysis of singu-
larity C)

Stations 1, 2, 3
observe all

Three stations in addition to
1, 2, 3 not lying on a second
order curve with them should
observe off-plane targets

The same as the
necessary conditions

Singularity C)
(global type of
singularity)

One station in addition to 4
and k not lying on a second
order curve with 1, 2, 3, 4,
k should observe off-plane
targets

The same as the
necessary conditions

targets

‘Group

jy con-

tains
Station k |off-
replaces plane
station 3 |targets
(satell%te Group
groub Ja |5, con-
contains tains
off- in-
plane plane
targets) targets

Two stations in addition to 4
should observe off-plane
targets. Always: Avoid all
stations lying on a second
order curve

More complex require-
ments (according to
stations which observe
off-plane targets)

Special case of singu-
larity C) is singularity
B); it occurs when all
stations are on a second
order curve

All stations ob-

serve all targets
(all stations co-
observe)

Avoid all targets lying in a
plane (any plane) and all
stations lying on a second
order curve

The same as the
necessary conditions




2. TREATMENT OF RANGE OBSERVATIONS WITH
GROUND STATIONS GENERALLY DISTRIBUTED

2.1 Introduction

In this chapter, the ground stations in fundamental range networks are
considered to be generally distributed in space. This discussion covers range
observations made over a large territory, when ground stations are on the
physical surface of the earth, departing significantly from a plane. Since the
ground stations in this instance are all approximately on a sphere, their distri-
bution in space is not completely general. However, whenever they depart from
a plane, the nature of the problem is the same regardless of further specifications.

The observations are again divided into quads with similar notations as
those used previously. Whether four or more ground stations observe simultan-
eously has again no effect on the derivations. Most of the investigations and
derivations will be carried out for such networks where at least three stations
observe all the targets. A solution will be shown to be singular when, for each
guad and corresponding satellite group, all points involved (four ground stations
and all the targets in that satellite group) lie on a specific second order critical
surface. This applies regardless whether the ground network consists of one
quad or more. A solution could be also singular due to singularity A) discussed
earlier. If singularity A) does not exist (this necessarily implies that a satellite
group needed for a network should not have all its targets on a straight line) then
the critical surfaces can be computed ( and thus avoided). There are no specific
conditions holding for ground stations only which would lead to singular solutions.

Consgequently, with singularity A)non-existent, a solution will be singular if
certain (or all) stations together with certain (or all) satellite points lie on

specific second order surface(s). However, such cases are not likely to happen
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in practice for the following reasons:
(a) Distribution of ground stations alone does not induce
any type of singularity. Since the number of ground
stations is always limited, their distribution presented
a cause for concern in the first chapter; it is irrelevant
in this chapter, however.
(b) If a network is singular, it is caused by all the satellite
points lying on certain second order surfaces (together
with some ground stations). This could seldom happen
in practice as the number of targets may be very high;
thus the probability of all the targets lying on specific
second order surfaces would be very small.
The investigations in this chapter can be certainly useful when only a small
number of targets is observed because then it could happen that they all lie near
one or more specific second order surfaces.’
For the reasons cited above, the range investigations for ground staticns in
general configuration are principally of theoretical interest. They are pre-

sented here to make the study related to range observations complete.

1t could happen that the satellite passes obgserved from the middle of a ground net-
work (extending over an area much smaller than a hemisphere) have the lowest
altitude, while the passes observed near the edges of the network have increasingly
much higher altitudes. If in appropriate scale, such configuration could be
approximated by a hyperboloid of two sheets, provided there was not even one
target at higher altitude observed from the middle of the network and not one
target of lower altitude observed from stations located towards the edges. This
case, illustrated in Figure 7, is clearly quite artificial.
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2.2 Range Observations from Four Ground Stations

in General Configuration

The basic steps needed for defining the coordinate system (local coordinate
system) and for obtaining A matrix with the ground stations in general configura-
tion and the satellite parameters eliminated are the same as those used in section
1.2. The explicit form of A matrix is given in Table (1.2-2). Similarly to what
was said there, a network is singular or non-singular if the corresponding A
matrix is singular or non-singular (the word "'singular' used in the same context).

With four ground stations denoted as 1, 2, 3,4, forming the ground network,
the problem can be non-singular if at least six targets are being co-observed. Let
the first five targets be denoted by their coordinates as (X,,Y,,Z,), i=1,2, ...5,
and let the sixth and any further target be represented as (X, Y;, 7). Matrix
A is then identical with the matrix represented by Table (1.2-2), with only the
first row block and non-zero column blocks present. It has six columns and as

many rows as there are targets observed from the four stations.

2.21 Critical Surface for Four Ground Stations Using Determinant Approach.

Matrix A will be singular if any determinant of its (6 x 6) submatrices is
equal to zero. In such case its row space (or column space) is of dimension
five in general. It is assumed that five independent rows in A correspond to
satellite points 1 through 5. If each further row is in the row space spanned by
the above five rows, then all the (6 x 6) submafrices of A are singular and so
is &, Therefore, A is singular if the determinant of its submatrix Ké, corre -
sponding to targets 1 through 5 and everytargetj, is equal to zero. From Table
(1,2-2) it is seen that

|A,] =0 (2.2-1)

represents a second order surface in (X, Yy, Z;). Since a second order surface
is in general defined by nine points, it will be examined what nine points satisfy

(2.2-1).

146



When any of (X,,Y,,Z,), i=1,2, ... 5 is substituted for (X,,Y;,,Z,), then
(2.2-1) holds, since in the determinant two rows are equal. If the coordinates of
ground stations 1, 2, 3,4, namely (0,0, 0),(xz,0,0), (X3, Vs, 0), (X4, V4, 2Z4) a1E
gradually substituted for (X,,Y,, Z;), then (2. 2-1) also holds since the last row
in the determinant contains only zeroes, Consequently, the second order surface
for any target j can be determined as passing through all four ground stations
and the first five targets and the problem with four ground stations is singular
whenever all the points (stations and targets) are lying on one second order
surface. This property was demonstrated also in Appendix 8, where the deter-
minant in (2. 2-1) was developed in terms of station 4 rather than in terms of
target j. However, this procedure was extremely long and tedious compared to
the approach used in this section. It demonstrated, among other things, that
it is preferable to work in terms of the targets' coordinates. The numerical
computations of a éecond order surface can be made more easily using the tech-
nique of fitting such surface to nine points according to the description given in
Appendix 6, rather than to use the approach of Appendix 8; the numerical
results in both cases have been found to agree very well, within round-off
errors,

From Table (1.2-2), it appears that singularity A) should be also taken
into consideration, using the same approach as in the first chapter. One can see
immediately that the same conclusions expanded by taking into consideration
Z =0, can be drawn now: singularity A) with i'espect to station 4 occurs if every
one of the (corresponding) targets is lying either in one plane through station 4,
or in the plane of stations 1,2,and3, However, in the case of four ground
stations, this represents a special case of the global singularity which occurs
when all the points are lying on a second order surface; namely, it represents an
intersection of two planes: one, which is the plane of all the targets and station
4, and the other which is the plane of stations 1,2, and 3. Similarly, what

had been defined as singularity B) is only a special case of a second order surface
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which would arise under certain conditions for the distribution of points; it would
be again included in global singularity. This can be said for singularity B) even
when more than four ground stations are involved. With general distribution of
ground stations (i.e., not lying in one plane) the effect of ground stations can-
not be separated from the effect of satellite points; for this reason, singularity B)
is completely irrelevant in this chapter. On the other hand, singularity A) will
have to be considered and eliminated separately when more than four ground
stations are involved; however, no further derivations will be needed in this
respect, since singularity A) occurs under the same conditions as presented in
the first chapter expanded by taking into consideration Z = 0 as it was done for
station 4, When considering stations 1,2, and 3 as observing all the targets, it
can be summarized as follows: singularity A) occurs if every one of the targets
in some satellite group is lyihg either in one plane through the corresponding
station, or in the plane of stations 1,2, and 3.

Finally, one very peculiar type of singularity, which could be called "reverse
singularity B)" will be mentioned. It is mainly of theoretical interest, however,
Since all the four stations observe all the targets, the two sets of points are
eguivalent in that each point in one set "observes'' each point in the other set.
Thus, all the targets are ""co-observing' all the stations. If the targets were
all lying in one plane, singularity B)would occur if they were also lying on a
second order curve. Singularity A) or singularity C) could not occur, since the
"observed' points (i. e., ground stations) do ﬁot lie in a plane. Consequently, the
problem could be singular if all the targets were lying on one second order (plane)
curve, This could approximately occur in practice if the four ground stations
were chserving the satellite points on two short passes of approximately the

gsame altitude. Exactly the same conclusions can be drawn for networks withmore

than four ground stations, whether all the stations are co-observing or not.
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2.22 Critical Surface for Four Ground Stations Using Canonical Approach.

The principle of this approach is the following: in case of singularity A)
eliminated for station 4, i.e., in case of the non-singular three column block for
station 4, it is always possible to bring to zero all except three rows in this three
column block by row equivalence operations; these three rows can be assumed to
correspond to the first three targets; then, using column equivalence operations,
the elements of these three rows in all the (three) remaining columns can be
brought to zero. Thus A matrix has been modified (without having the rank
changed) in such a way, that it has a non-singular (3 x 3) submatrix in its upper
left corner, with zeroes everywhere else in the first three rows and columns.
Had singularity A)occurred, none of these operations and no further analysis would
have been necessary. Thus, using the canonical approach, singularity A) will be
assumed eliminated. The following derivation for four ground stations, as well
as later for more stations, will be based on this assumption.

The practical way of bringing zeroes to the three column block of station 4
(and any other station in later derivations) is based on the fact that the fourth,
fifth, and any further non-zero row in this three column block must lie in the
row space of the first three rows which are assumed independent. Consequently,
any such row, now denoted as row j, can be brought to zero by adding to it the pro-
per linear combination of the first three rows. The corresponding coefficients of

these rows will be denoted as ki, ks, ks. They can be computed as follows:

ky Zo(X1-%y) Zo(XaXe) Za(Xa-xg)| ™| Zy (Xy—%y)
ka| = =1Za(Y1-ye) Ze(Yo-Va) Za(Ya-¥o)| | Z5(Yy-Va)| - (2.2-2)
kg 21(Z1-24) Zo(Z2-24) Zg(Za-24)| | Zy(Zy-24)

This is seen directly from the corresponding three column block of A matrix in
Table (1.2-2), The inverse in (2.2-2) exists due to the earlier assumptions. The
same row operations have to be performed on all the columns of A matrix {(i.e.,

on the entire row j). This will change the jth row in the last three column block
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(by adding to it the same linear combination of the first three rows). When this
is accomplished for all the rows j (i.e., for the rows corresponding to targets
4.5,6, and any further targets), the first three column block has the desired
form. Bringing to zeroes the first three rows in the last column block is accom-
plished at once., If there were o rows in the original K4 matrix, its form after

the above operations would be:

(3x3) (2x3)

{o-3)x3 (0—33x3

l
|
B o~ |em e e m e e = | (2.2-3)
|
|

From (2.2-3) it is evident that K4 is singular if and only if A, is singular (i.e.,
has rank smaller than three). Thus the problem has been reduced to analyzing A,
matrix, which has only three columns. Analogous reductions will be made for
more than four ground stations.

Next, the rows of A,will be obtained, using the coefficients k. In order to
é@lve (2.2-2), the determinant of the matrix to be inverted, denoted as D,, is

after some algebraic manipulations obtained as

Dy = ayXg+ 2pYs T 2324 + 34 (2.2-4)

where

4 = ;1 tast Y,

85 = 8p1 T 8gp T Apjs,

2.2-4a

ag = ag1 * 32T aga, ( )

g = -(Z1331 * Zzagx + Z3aaas),
and where
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ayn = ~YoZzt+ YaZp, a1z = YaZg- YgZi, 835 = -Y1Z2 + Yo7,
ag1 = XpZg - XgZz, 8pp = -X1Zg+ XgZy, 3= XiZp-XpZy  (2.2-4D)
ag; = ~Xp¥g + Xg¥s, 832 = XiYz - XgY1, 833 = -X Y2 + XpY;.

The part of row j which is located in the last three column block will be denoted as

ry; it will have the form (after the row equivalence operations have been per-

formed):
’ Dy(zaYy - ¥aZy) (X - Xa) !
1
r, = D—4{ Dy (22 Yy - Yo Zy) (Y - ¥o) -
(x2) D4[Z4 Xy - Y,y '}';'3;) - Zy 04] X; - %)
(24Y1-Y4Z1) (X1 ~X5) (-Dgky) + (24Yz-Y4Z2) (Xa~Xa) (-Dakz) +
= | (2aY1-Y4Z1) (Y1-Ya) (-Dgky) + (24Y5-YaZ2)(Y2-¥3) (-Daks) +
[24(X1‘Y1§:')‘2104](X1‘X2) (-Dgky) + [24(X2‘Y2‘§§§)"ch4](xz”xa) (-Dakz) +
+ (24Y5-YaZ3)(X5-Xs) (-Daks) 1T
t (24Y37YaZ3)(Ya~Ya) (-Deks) } (2. 2-5)
+ [z4<X3-Y33y‘j>-zac41 (Ka-32) (-Daky)
where

X
Ci= Xy~ Yo
Yz -
The terms (-Dgk;), (-Dgkz), and (-D,ks) can be expressed as
1
-Dky = z (X, Zy xBy +Y,Zy(-Cy) + ZZ xDy + Zy x E; ],

1
-Dk, = z [X,Z,(-Bg) + Yy Zy xCa+ Z5 (Do) + Zy xEz], (2.2-6)
and

1
-Deks = (X, xBg+Y,Zy(-Ca) + Z5 xDa+ZsxEg]
3
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where
B, = -ay - (Y2-Y3)2Zs * (Z2-2Z3) Vs,
Cy = ap- (Xa-X)zs + (Z2-Z3)x,,

D, = -ag; - (Xe-Xag)ya ¥ (Y2~ Y3)Xe, (2.2-63)
Ei= anXg+taz yst 8312,
and
Bo= a32- (Y1-Ya) 2yt (Z1-Z3)Ya,
Co= -8z2- (X1 -X3)2s + (Z1 - Z3) Xy,
Do= 8as- (X -Xo)¥a * (Y2~ Yo Xs, (2.2-65)
Ex= a12X4% a32Y4 * 832724,
and
By=-a13- Y1-Y2) 2z + (Z1-Z3) Vs,
Ca= a3~ X1-X2) 2y * (Z1-Z2) %y,
(2. 2-6¢)

D; = -ag3- (X1 -Xe)¥a + (Y1~ Y2) Xy,
Ez= a3X,+ 823y T 2332,4.
The three expressions in (2.2-6) are all equal to zero whenever Z, = 0 (and so
when target j is replaced by any of stations 1,2, 3) and also if (X,,Y,,Z,) is sub-
stituted for by (X4, Ya, Z4). Since D, # 0, it must hold that

k} =kpg=ks =0 whenever j = 1,2, 3,0r 4; (2.2-Ta)
further,

k, = -1, ks = 0, kg = 0 whenever j = target 1,

i

k, = 0, k; = -1, kg = 0 whenever ] = target 2, (2.2-7b)

k, = 0, ko= 0, ks = -1 whenever j = target 3.

The relations (2.2-7b) can be immediately found by inspection from (2.2-2);

they follow also from (2.2-6)-(2.2-6c), which thus verifies all the above derivations.
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The matrix Z; is such that it is composed of the rows ry, j=4,5,6, ... ; if

any target beyond targets 4 and 5 is denoted as a variable point (X,Y,Z) and its

row by the letter r, then A, can be written as

Ty
I's

A= .| (2.2-8)

.
Should 7%; be singular then every row r would have to lie in the row space of ry

and rs, assumed independent (they would be dependent if it held that z, = 0, i.e.,

if all the observing stations were lying in a plane which is not true in this chapter);

namely, it would hold for any row r that

Ty
rs | = O. (2.2-9)

r

From the form of (2.2-5) and (2.2-6), it is clear that the row r contains the terms
of first and second order in (X,Y,Z). Therefore, (2.2-9) expresses the condition
that the variable point (X,Y,Z) lies on a second order surface passing through the
origin (of the local coordinate system),

As usual, it will be useful to find nine points through which the second order
surface passes and which could in general serve for its definition (see for instance
Appendix 6), Clearly, whenever (X,Y,Z) is the same as (X, Y,, Z,) or (Xs, Y5, Zg),
then r is the same as r, or ry and (2. 2-9) holds, Further, whenever the variable
point in (2. 2-5) - there appearing as (X,, Yy, Z,) - is substituted for by stations
1,2,3,0or 4, that row becomes a zero row (for the first part in (2.2-5) it is seen
directly and for the second part it follows when the conditions (2.2-72) are consid-

ered). The same is true when the variable point is replaced by targets 1,2, or 3;
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this follows directly from (2.2-5) and (2.2-7b). Thus,the second order surface
defined by (2.2-9) for any target (X,Y,Z) beyond target 5 passes through stations
1,2, 3,4 and targets 1,2, 3,4, and 5. It can be concluded that a problem is
singular whenever all the (four) ground stations and all the targets are lying on
one second order surface. This property has been demonstrated already in
section 2,21 and in Appendix 8. However, the canonical approach from this
section is the most important as it will be used for networks containing more than

four ground stations as well.

2.23 Computations of Critical Surface for Four Ground Stations.

2.231 General Considerations.

A general equation of second degree in three variables (x,y, z) can be written

AX® + Hxy + Gxz + By*+ Fyz + CZ2+ Px+ Qy + Rz + D = 0, (2.2-10)

The solutions of this equation can be represented by a second degree surface., If
the constant term D in (2, 2-10) is equal to zero, the surface passes through the
origin of the coordinate system. Some of the following notations and descriptions
are taken from [4 ], p. 362. The (3 x 3) matrix containing the coefficients of the
quadratic terms in (2. 2-10) will be denoted by the letter A (not to be confused

with the coefficient A in the above equation); its form is given as

B 1 1 |
A —H —
2 ZG
_ 1 ey
A= | SH B ~F | . (2.2-102)
1
— G 'LF C
L_Z 2

The matrix obtained from (2,2-10a) and denoted as E is defined in the following

manner:
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_" 1 1 1|
= = =P
A 2 H 2 G 2
1 1 1
— — F —
> H B P 2 Q
E= 1 1
1
— —F C —R
2 G 2 2
1 1 1
= = = D
3 F 5 < z B _
Its determinant is denoted by the symbol A, i.e.,
A = |E[.
If further notations are introduced, namely
X P
X=1Yy s a=Q s c = D,
Z R

‘then the equation representing a second degree surface can be written as
x'Ax + x'a + ¢ = 0 (2.2-11)
when the surface passes through the origin, its equation reduces to
x"Ax + x"a =0, (2.2-11a)

A general caseto be investigated is such that both A and E matrices have full rank,
Its solution may be either real or complex. Of all possible cases, only those which
have a real solution and whose matrices A and E ‘both have full rank are of
importance in this study. They arepresentedinTable (2.2-1), Thefourth column there
has the heading "signs of A's"'; since X represents any of the three eigenvalues of
the above A matrix, this column specifies whether all three )\'s have the same

sign or not. In the case of an ellipsoid, the signs which are the same must be

positive (otherwise the ellipsoid would be imaginary).
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Table (2.2-1)

Description of Pertinent Second Order Surfaces

Rank e | Rank E A Signs of A's Kind of Real Surface

3 4 <0 Same Ellipsoid
3 4 >0 Different Hyperboloid of one sheet
3 4 <0 Different Hyperboloid of two sheets

The distinctions specified in this table were used in Appendix 4,
section A4, 3, when dealing with solutions of second degree equations of the
type (2.2-11),

In the present study, equations of the type (2.2-11a) are obtained with respect
to the coordinate system in which they were derived, i.e., with respect to the
local coordinate system., However, in general the points of a network are given
in a different coordinate system, called basic. In order to obtain the critical
surfaces in the basic coordinate system, transformations have to be applied
between this and the local coordinate system. First, the following notations will

be introduced:

X = }; coordinates of a point in the basic coordinate
| Z system; thus in particular,
X =|v coordinates of the origin of the local coordinate
(] <]
| Z, system;
x = ;{ coordinates of a point in the local coordinate
Z sy stem.

According to (A4-4a) - (A4-4c) in Appendix 4,

x = P'(X-X,) (2.2-12)
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where x was identified with X’ and P with R, a (3 x 3) orthogonal matrix. This
formula gives the coordinates of a point in the local coordinate system computed
from the coordinates given in the basic coordinate system; it is said to transform
the coordinates from the basic to the local coordinate system. From (2.2-12)

or (A4-4a) it is obtained that
X = X,+Px, (2.2-13)

which is said to transform the coordinates from the local to the basic coordinate
system. The orthogonal matrix P is made up of the directional cosines pertaining

to the relative orientation of the two coordinate systems, namely

cos (X, %) cos (X, y) cos(X, z)
P = |cos(Y,x) cos (Y, y) cos(Y, z) . (2.2-14)
cos(Z, x) cos(Z, y) cos(Z, z)

Here X,Y,Z represents the three axes of the basic coordinate system and x,y, z the
\three axes of the local coordinate system; thus (X, x) represents the angle between
the X~axis and the x-axis, with similar description for the other angles.

The values needed for the transformation equations (2.2-12) and (2.2-13) are

the vector X, and the matrix P. The vector X, is simply given as

X, . . . .
X, = |v, o coordinates of station 1 in the basic (2. 2-15)
Zy coordinate system.

(This notation should not be confused with (X, Yy, Z;) from all the other sections
where the capital letters are reserved for targets' coordinates and the small
letters are used for stations' coordinates; the capital letters are used for stations'
coordinates exclusively in the problem of transformation of coordinates between the
local and the basic coordinate systems involving only stations 1,2, 3; in such a pro-

blem the targets' coordinates de not appear at all). Thedirection of the x-axis in
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terms of the basic coordinate system is given by the unit vector i, where

Ry cos (x, X)
i=]ig) = |cos(x,Y) | . (2.2-163)
ig | cos (X, Z)

Since the x-axis was defined as the line connecting stations 1 and 2, it holds that

where
1
Sie = [(erl)s t (Yo-Yy)° + (zz-zlﬂz-
The z-axis was defined to be perpendicualr to the plane of stations 1,2, 3; a vector
v in this direction is given as a cross product of a vector in direction from station

1 to station 2 and a vector in direction from station 1 to station 3, which will be

written as

v = (12) x (13)

with appropriate vector interpretations. The vector v is then computed as

i (Yo-Y1)(Z3-Zy) - (Z2-71)(Ys-Y,)
V =21 Va = | (Z2Z1)(Ks-Xy) - (Xa-X1)(Z3-Zy)
V3 (Xe=X1)(Y3~-Y1) - (Yo Y1) (Xs-%X1)

With s denoting the norm of v, i.e., with
— 1

the direction of the z-axis can be given by the unit vector k such that

ky cos (z, X)
k=|k| = 1{cos(zY) (2.2-16Db)
ks cos (z, Z)
where
V. V. \
kg = —~, kg = 2, k= -2,
1 s 2 s 8 s
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Finally, the unit vector of the direction of the y-axis is given as

~j1 cos (Ya X)
]? =ljal = lcos(y, V)| ; (2.2-16c)
I cos (v, Z

~ ~

since j is a cross-product of k with f, namely,

~

j=koxd,
its components are given as follows:
h = kels-Kglp, J2= ks -kils, s = kyiz - kels.

Consequently, using (2.2-16a) - (2.2-16c) in the formula (2. 2-14), the matrix P

can be written as

il jl kl
P=1Ii jg kaj. (2.2-17)
].‘3 jS k3
2 232 Critical Surface Algebraically, in Local Coordinate System.

The critical surface for four ground stations has been shown to be a second
order surface passing through all four stations and (first) five targets. It could
be found for instance by the fitting procedure described in Appendix 6. However,
it will be helpful to find the form (2.2-11a) of this second order surface in the
local coordinate system independently, using the canonical approach.

To do this, it will be necessary to obtain the three elements of the row r,
appearing in (2. 2-8) or (2.2-9), explicitly in terms of (X,Y,Z). It will be done
using the relation (2. 2-5) for r;, where j holds for any target beyond 3. Thus
for row r, corresponding to any target beyond 5, the index j will be simply drop-
ped everywhere in (2.2-5). The three elements of this row will be denoted as r*,
r®, and r°, so that

r = [ ® 2], (2.2-18)
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Using the relations (2. 2-6) together with (2.2-5), after some algebraic manipula-
tions the following result, written conveniently in a matrix form, is obtained:

1

r
r' = = —1-M4 vV . (2.2-19)
Dy (3x9)(9x1)
I'S

the elements of My are given for the first row as

my = 0, myz = 24Dy, Myz = -¥4Ds~ A By (X1 -X3) T A2Ba(Xz-X3)- AsBs(X5-X3),
mye = 0, mys= A)Cy(Xy-X3)-A2Ca(Xo-X3)tA3Ca(Xa—%a), Myg = -A Dy (X -Xs)t
+AgDa(Xa-X3)-AzDa(X3-X3), mys = 0, myg = -X324Dy, Myg = X3¥aDa- AL E; (X -X3)-

- AzE(Xo-X3)- Az E3(X5-X3),

for the second row as
mgy; =0, mpp =0, Maz = -A1B1(Y1-¥3)*ABa(Y2-¥a)-As Bs(Y3-ya), Mz = z4Dy,
mgs = ~Y4DytA) C1(Y1-Y3)-A2Ca(Y2-y3) T AzCa(Y3-Ys), Mag = ~AiDi(Y1-ys)*+
+AzDa(Y2-y3)-A3Da(Ys-ys), Mpy =0, Mgg = -y324Ds, Mag = Ya¥aDa~ A1 Ey(Y1-y3)-
- ApEa(Y2-y3)-AsEa(Ya-ys),
and for the third row as
Ma1 = ZgDy, Mgz = '%,{: 24Dy, Mgz = ~C4Dy~K; B HKeBe-KsBs, mgz, = 0,
mys = Ky G -KaCatKsCs, Mag = =KDy +KaD2-KaDs, Mgy = ~Xpz4Dy,
Mge = Xeiyij 24Dy, Mazg = XaCeDy-Ki B -KoEz-K3Eg
where new notations have been introduced as follows:

Y Y. Y
Ay = Ei Z4a=Ya Az = 'i': Z4~Ys, Az = —Z-: 24~ Yas (2.2-192a)

and
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K, = Xy - Xg) 24(—1 )‘ 04]
Kz = (Xa - )rz4(—‘°‘ Z )-— Csls (2. 2-19b)
2
X, Y
Kz = (X5 - Xa) [24(_2'&‘ 'Zj' - cgl.
3
The column vector V has the form:
VvV = [X3 XY, XZ, Y3 YZ, Z5, X, Y, Z 1. (2.2-20)

Clearly, for the rows r, and rs it can be written in analogy to (2.2-19):

Ty
r] =2 = L M,V, (2.2-21)
D,
rg
where
[Xs, XeYs XaZy, Y5, YaZs, 23, KXoy Ya, Z,]7 (2.2-214)
‘and
rs
T _ 2 - 1 ¢
I‘s = I‘5 - M4:V5 (2. 2"’22)
D,
ré
where
[XZ, XsYs, XsZs, Y&, Y5 Zs, Z&, Xs, Ys, Zs] . (2. 2-222)

Using the latest notations, the expression (2.2-9) can be written as

re r? rd|= o, (2.2-23)
oo

which gives
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'R + IRy + IRy = 0 (2.2-233)

where
— 2_.3 3.2
Ry, = rgrg - r; rs,
1
Re = rfrs - rjrd, (2. 2-23b)
Ry = riré?— rers.

Using the expression (2.2-19) for r, it is now obtained from (2. 2-23a):
—D%; (X0, +XYby+ X Zbs + Y30, + Y Z bs+ Z%b; + Xb,+Yhg+Zbg) = 0 (2.2-242)
where by, bs, ..., bg can be determined from the relationship, which will also be

useful later; namely,

B, = RM, (2. 2-24b)
where

By = [by by by by bs bg by bg bg]

and

R = R, Ry R;]

{upon inspection of (2,2~19) and (2.2-23a) it is seen that (2.2-24a) is valid

with by = ZS)m“RJ, i=1,2,..., 9, which is exactly (2.2-24b)). Since it holds
in generalﬁtilat
b, # 0,
the equation (2. 2-24) can be multiplied by ]—Sl and the result written in a matrix
form as )
x"Ax+x'a =0 (2.2-25)

where, with the usual notations for the elements of A-matrix and a-vector, it

holds that
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any = 1,
1 b
Y T Az T '2_'612,
1b
Ny T 4z T _2—731&3
(2.2-252)
apz ¥ D,
b’
b
85 = 83z = Tof
b,
33 = -};15’
and
b
a = —b_lzs
az = be (2.2-25b)
b19
b
2 =

The second order surface representedby (2.2-25) - (2. 2-25b) is then the desired

form (2.2-11a) given in the local coordinate system. Numerically (within
round-off errors), the same values for A-matrix and a-vector were obtained as

those computed by methods developed in Appendix 6 or Appendix 8.

2.233 Practical Computation of Critical Surfr;tce.
The critical surface for four ground stations can be computed in four steps
as follows:
(1) Transformation of coordinates from the basic coordinate
system to the local coordinate system of all the points
(ground stations and targets).
(2) Computation of the critical surface, given in the local

coordinate system by (2.2-25), in the canonical form
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including the determination of its center and six main surface
points; furthermore, computation of an approximate
distance to the surface from any point beyond the four
ground stations and the first five targets.
(3) Transformation of all the new points from the canonical
coordinates to the local coordinate system.
(4) Transformation of all the new points from the local coor-
dinate system to the basic coordinate system.
A moreg detailed description and explanation of these four steps is appropriate
at this time,

The formula to be used in step (1) is (2.2-12); the values for X, and P used
in it can be computed from (2.2-15) and (2. 2-17).

The first part of the computations needed for step (2) can be carried out
using the method presented in Appendix 4, section A4,3. To make the formula
{2.2-25) representing the critical surface with respect to the local coordinate
system complete, the coefficients listed in (2.2-252) and (2. 2-25b) have to be
bomputed; this can be done when step (1) has been completed. The formula

(2.2-25) corresponds to (A4-18) in Appendix 4. There, the local coor-

dinate system is called "original coordinate system'. In section A4.3, the
approach to find the kind, size, and shape of the second order surface is given,
which finally leads to determination of the center of the surface and its six
"main surface points'". At the same time, thé computation of the second order
surface yields the values for x, and R, necessary to determine its position

and orientation with respect to the local coordinate system. In the second

part of step (2), approximate distances from some points to the critical surface
are required. A method to achieve this - with the precision improving when the
point approaches the surface - was developed and described in Appendix 7. The
computations of such distances are done in the canonical coordinate system.

Furthermore, additional points on the second order surface are obtained; they
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correspond to certain projection of the above points onto the surface, as
specified in Appendix 7. This feature can be useful in examining some nearly
singular cases, because one can get a fairly good idea how close certain targets
are to the critical surface. With all the ground stations in a plane such computa-
tions were unnecessary, since the critical curve in that case could be plotted

and the distance measured.

Transformation from the canonical coordinates to the local coordinate
system is also described in Appendix 4 and given by the formula (A4-8). The
new points to be transformed are the center of the critical surface, its six main
surface points and "projected points", if any. The old points can be also trans-
formed to the local coordinate system and then back to the basic coordinate sys-
tem for checking purposes.

The transformation of step (4) is performed using the formula (2. 2-13)

with X, and P being the same as in step (1).

2.3 Range Observations from Any Number of Ground Stations

with Three Stations Observing All Targets.

The stations observing all the targets will be denoted by numbers 1,2, 3 as
it was done in the first chapter; also other notations as well as the arrangement
of observations in quads will remain the same. A matrix for any number of
ground stations in general configuration is given in Table (1.2-2), section 1.2,
The analysis of the critical surfaces in this séction will be made using the
same principles as those for four ground stations, described in previous sections,

i.e., using the canonical approach.

2.31 Critical Surfaces Using Canonical Approach.

The same approach as in sections 2, 22 will be now used with respect to all
the three column blocks corresponding to all stations beyond 1,2, 3 (i.e., for all

except the last three column block). Each such block will be "cleared' by row
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eguivalence operations of all except the first three of its rows. The remaining
elements in such three rows will be again brought to zero by column equivalence
operations. With the above row equivalence operations, the corresponding rows
in the last three columns will be changed. The form of these rows for the first
row block (corresponding to station 4), was described in the previous sections;
they were denoted as rows ry, which was later changed to r, and rg to denote the
fourth and fifth row (corresponding to targets 4 and 5 observed from station 4),
and to r to denote any further row beyond rs. The submatrix composed of such
rows r was denoted as Ké. Exactly the same procedure with the same assump-
tions (i.e., singularity A) eliminated) will be used for other stations as well.
Their submatrices in the last three column block will be similarly denoted as Ks,
£, ..., etc., where the index specifies to which row block (or station) they refer.
In analogy to D4, the determinants associated with other row blocks will be
denoted as Ds, Dg, ..., etc. After the outlined equivalence operations, the rows
may be further arranged in such a way that K4, Ks, A, ..., etc., submatrices

appear in the lower part of this modified A matrix. It now has the form:

‘P, 0 0 0
0 Ps O 0
0 0 P, 0
A~ -
0 0 0 A,
0 0 0 As
0 0 0 A

which can be written as
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A~ (2.3-1)
0 KJ

where P is a non-singular matrix composed of non-singular (3 x 3) submatrices

along the main diagonal and zeroes elsewhere, and where A is given as

Aq

A=, (2.3-2)

Due to the form (2.3-1) and the property of P matrix, A is singular if and only if
A is singular. Thus, the problem has been again reduced to analyzing a matrix
with only three columns. There has to be at least three rows in K, or else A
would be automatically singular without any further considerations.

1 The rows in A,, denoted as r,, rs, r, corresponded to the fourth, fifth, and

any further target observed from station 4; they were given by (2.2-21), (2.2-22),

and (2.2-19) respectively. The rows in Ag, denoted as T, T, ..., are computed
the same way, namely
T,
T e & __.. 1 o
T, = T, === Ms V,. {2.3-3)
Dg
| T2 |

Dg is computed according to (2. 2-4) - (2. 2-4b) with the coordinates of station 5
replacing the coordinates of station 4 and the coordinates of the first three
satellites in js taking place of the same coordinates in j,; Mg is computed from

(2.2-19) through (2. 2-19b) with exactly the same modifications as above; V,,
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given by (2.2-21a), is associated with the fourth target in js rather than in j,.

Any further row in Xs, denoted as T, is obtained as

Fl

T o= | = — MgV (2.3-4)

%,

where V has the same form as represented by (2.2-20) and it is now associated
with the critical surface for (the quad of) station 5 rather than station 4. Any

row in A, will be denoted as T itis given as

TTOo= | FB| = — M, V; (2. 3-5)

it can be described exactly the same way as the row T, except that all the quanti-
ties in (2. 3-9) refer to station 6 rather than station 5 (including the corresponding
satellite groups). Similar formulas and descriptions would apply for any further

stations.

Since there are at least three rows in A matrix, each station has to observe
at least three targets (otherwise singularity A) would automatically occur) and at
least three more targets must be observed from one or more quads. (When the
stations were considered lying in one plane at least three quads had to observe
such additional targets, while here these targets may be observed by just one
quad, so that theoretically one quad could observe six targets and the other quads
only three targets each.) The problem will be singular if each additional row in

A is lying in the row space of the first two rows, assumed independent. At this

point the discussion will be divided into two cases: case (a), where j, is

assumed to contain more than four targets, and case (b), rather theoretical,
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where j, is assumed to contain exactly four targets (otherwise the stations can
be renumbered so that station 4 always observes more than three targets).

Case (a) is such that the firsttworows in A are r, and r5, corresponding to
targets 4 and 5 observed by station 4; they are the same two rows as those used
in section 2.232 and given by (2.2-21) and (2.2-22), needed to compute the critical
surface for station 4. Consequently, the critical surface for station 4 in the
local coordinate system is given by the formulas (2. 2-25) - (2.2-25b) in which the b
coefficients can be found from (2. 2-24b) and (2. 2-23b), with the elements of I,
matrix given following the formula (2.2-19). At the end of section 2. 22, this sur-
face was shown to pass through stations 1,2, 3, and 4 and through the first five tar-

gets observed by station 4, For station 5, the critical surface is represented by

1'41 Ty Ty
frd & 12| =0 (2.3-6)
S S

where T corresponds to any row in Ag, i.e., to T, as well. This surface is seen to
pass through stations 1, 2,3, and 5 and through the first three targets observed by

station 5; if the target corresponding to row T is substituted for by any of these

points, then T is a zero row according to the same reasoning which followed (2.2-9)

at the end of section 2.22. The equation (2. 3-6) can be written as

T'R, + T°Ry + T°Rs = 0 (2. 3-6a)

where R;, Rs, Ry are given by (2.2-23b). From (2.3-6a) considering (2.3-4), the
critical surface can be given by the formula (2.2-24a),where D, is to be replaced

by Ds and where the b terms are now computed from

Bs = RMsg (2.3-7)
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with
By = rbl bg b3 b4 b5 bG b7 bg bg].

Thus, the critical surface for station 5 can be given again by (2. 2-25) - (2. 2-25Db),
using (2. 3-7) for computation of the b-terms. In exactly the same way the critical
surface for station 6 (and any further station) could be found; in this case the b-

terms would be computed from

B; = RMg. (2. 3-8)

This surface passes through stations 1,2, 3, and 6 and the first three targets ob-
served by station 6, analogous to the behavior of the critical surface for station 5.

Consequently,the problem is singular if all the targets beyond target 5 in j,
and beyond target 3 in js, j5, etc., are lying on the corresponding critical
surfaces; these surfaces can be all computed using (2.2-25) - (2. 2-25b) with the
b-terms found respectively from (2.2-24b), (2.3-7), (2.3-8), etc. All the
practical computations with respect to each of these critical surfaces are the
same as those described in section 2.233.

Case (b) is such that the first two rows in A are r, and T,, corresponding to
target 4 from the satellite group j, (observed by station 4) and target 4 from js.
If there were some additional targets in j,, represented by the row r, the

critical surface for station 4 would be given as

rs rZ
T, T, TS| =0, (2. 3-9)
rt r? 8
or
'R+ r"Ro+ P Ry= 0 (2.3-9a)
where
§1 = rfif - rf Tf s
Ry = rlT} - o} T2, (2. 3-9b)
Ra = 14 Ff - 1574,
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with the rows r, and T, given by (2.21) and (2. 3-3). This surface would pass
through stations 1,2, 3, and 4 and through the first four targets observed by station
4 (if the variable point corresponding to row r were replaced by any of the first
seven points mentioned above then r would be a zero row, while for the eighth
point - target 4 - r would be the same as the first row of the determinant in

(2. 3-9)). Comparing (2. 3-9a) with (2. 2-23a), it is clear that the critical surface

could be represented by the equation (2.2-24a) with the b terms obtained from

B, = RM, (2.3-10)

where

R = TR, Rz Rsl. : (2.3-11)

Consequently, such critical surface for further targets in j, would be given again
by (2.2-25) - (2.2-25b) with the b coefficients from (2.3-10). For station 5, the
critical surface can be represented by the relation (2. 3-9) where the row r is
replaced by the row T; this row is associated with any target in js beyond target
4, This critical surface is seen to pass through stations 1, 2,3, and 5 and through

the first four targets observed by station 5. It is given by the relation

T'R, + T2R, + T°R, = 0. (2.3-12)

Considering (2. 3-4), this leads again to the formula (2. 2-24a) where D, is to be

replaced by Dg and where the b terms are now computed from
Bs = RMs. (2.2-13)

Thus the critical surface for station 5 is given again by (2. 2-25) - (2. 2-25D),
using (2. 3-13) for computation of the b terms. The same formulas would also
apply for the critical surface for station 6, except that the b terms would be com-

puted from

B; = RM.. (2.3-14)

171




This surface passes through stations 1, 2,3, and 6 and through the first three
targets observed by station 6, as it was already seen in case (a). One could
continue the same way for any further station.

The problem would then be singular if all the targets beyond target 4 in j,
(however, such targets are not assumed to exist in this case), beyond target 4
in js, beyond target 3 in j;, etc., were lying on the corresponding critical surfaces;
these surfaces can be all computed using (2. 2-25) - (2. 2-25b) with the b terms
found respectively from (2. 3-10), (2.3-13), (2.3-14), etc. All the practical com-
putations with respect to each of these critical surfaces are again the same asthose

described in section 2. 233,

2.32 Problem with Critical Surfaces Coinciding.

2.321 General Considerations.

The 9-vector V was given as

V=I[X3XY,X2,Y,Y2,72% X,Y,Z]". (2. 3-15)

it will be now partitioned into two parts, according to absence or presence of any
Z-coordinate; namely,

V= IXE XY, Y5 X,Y]T (2.3-152)
and

V= [X2Z,YZ,2% 2]". (2. 3-15Db)

Any {1 x 9) vector B contained nine b terms; this vector was subscripted accord-
ing to the corresponding station number; furthermore, in case (b) it was denoted
as B. The following derivations will be made for case (a); considering the criti-

cal surface for station i, the B vector is written as

B, = [by by by by bs by b be 1 (2.3-16)

It will be partitioned correspondingly to vector V as
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Bif = [b, ba by by bg 1y (2.3-162)
and
BZ = [by bs b bg],. (2. 3-16b)

Matrix M, and any further matrix M, (corresponding to the same station i as By)

will also be partitioned; from the form of M, it is seen that

O Z4 0 0 _XS Z4
M, = 0 0 Zg 0 -VaZ4 |, (2.3-173)
X X.
—‘Z4 "";7:: Z4 0 _Xz Z4 XE—S;Z' Zt

which is of rank three; (3 x 4) matrix M2 is much more complicated. Similarly,

o z, 0 0 “X3Z, |
M} = 0 0 z, 0 -Vazy | . (2.3-17b)
X3 R.5
z - A 0 ~X5Z X Z
_i Va i 241 2y3 b

It has been assumed that z, # 0 and z, # 0. From (2. 3-17a) and (2. 3-17b) one can
see that

M, z, = M/ z,. (2.3-18)

Since B,, B, were computed as

B, = RM,, B, = RM,
and consequently
B} = RM,, B, = RM/,
it also holds that
Blz, = B{ z,. (2.3-19)

b, b, b b,
But then _612’ -g*, glz, andﬁ mustbe the same for station 4 and any station i.
1
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Clearly, all these results hold in case (b) as well, Consequently, the parts of

A-matrix and a-vector from (2.2-25), such as

- -1

1 a3z aj

api azz ag

must be the same for all critical surfaces in one network. This property served
as a useful check in numerical computations in both case (2) and case (b).
A plausible geometric interpretation of this result is such that each of
the critical surfaces intersects the plane of station 1,2, and 3 (i.e., plane
z = 0) in a second order curve and that all these second order curves coin-
cide. Necessarily, this one second order curve, common to all the critical
surfaces, passes through the stations 1,2, and 3 (further stations and all
targets are in general assumed not to be lying in the plane z = 0). An illus-

tration of this rgsult is presented in Figure 6.

The critical surface for any station was given by (2.2-25) as
XTAX +xTa=0,
which can be also written as
BV = B'V* + B®*V® = 0; (2. 3-20)

here the subscripts have been omitted. Whenever non-zero A-matrix and a-vector
for two second order surfaces are the same, these two surfaces coincide. In

terms of the equation (2. 3-20) this means that whenever it holds that

BZz, = Bfz,, (2.3-21)

then, due to

1 — 1
B, zy = By z
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Plane of
stations
1, 2, 3

Figure 6

ILLUSTRATION OF CRITICAL SURFACES: Stations 1, 2, 3 observe all
targets; stations 4 and 5 together with their satellite groups j, and is
are on the second order surfaces S, and Ss, respectively; stations 1,
2, 3 are on the second order intersection curve of surfaces & and 5.
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it also holds that
Bizy = Byzg (2.3-22)

and, therefore, all the terms in A-matrix and a-vector for station 4 and station i
are the same (see what was said following (2. 3-19)). Consequently, if (2.3-21)
holds, then the critical surfaces for station 4 and station i coincide.

Next, it will be shown when (2. 3-21) can hold, Let 1,2, 3 denote the first
three targets observed by station i. Assume that station i and targets 1,2,3, lie
on the critical surface of station 4. This is expressed by the relations of the

type (2, 3-20); namely,

B,vV, =0, B,V =0, B,Vz=0, B, V3= 0. (2.3-233)
For the critical surface of station i it holds that

B,vV,=0, ByVi =0, B;Vz =0, B,Vy =0, (2. 3-23b)

since points i and T, 2,3 always lie on this surface as it was shown for both case (a)
and case (b) in section 2.31. Considering (2. 3-20), it follows from (2. 3-23b) and

(2.3-23a) respectively:

i

BEVE = -B!V!, BfV = -B/VW, BEVE=-B!Vi, BEIVE=-BlVj.

BIVY = -B; Vi, BJVf=-B/Vi, BSVE=-B;V3, BJVF=-B,Vs.

These last relations can be written in matrix form as

B2[VE V¥ V& V&) -B} [V} V& V& V3]

and
BS[(VE V& v§ V&l = -B [V W Vi Vil
Denoting
N = [VZ V@ Vi V#]

(dxa)
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Ay = viov vz Ve

the above equations can be written as

BEN = B{M
and

BZN = B/ M,
or

B2 = B!MN" (2. 3-24a)
and

BZ = BfMN', (2. 3-24b)

provided N is non-singular. Using the relation (2.3-19), i.e., using

Z
1 . 1
B} = —* B;
4

in (2, 3-24a), it follows that

.

this togehter with (2, 3-24b) gives
B2z, = Bfz,

which is exactly the equation (2, 3-21).
As the last step in this derivation, it will be proved that under the earlier
assumption of singularity A) eliminated, the above matrix N is indeed non-singular.

If N were singular, it would have to hold that

Xy Zy X5 27 X573 X3Z3
V124 Y7277 YzZs Y523
= 0, (2. 3-25)
Zi2 Ziz Z'éz Z-éa
z, Z7 Z3 Z3
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Factoring out z,, Z1,Z3, Zz from the above determinant (all assumed non-zero),
transposing it and subtracting its first row from the other three rows, (2.3-25)

can be written, using the development by the first row, as

Xi-%y Yi-yy VAR
X5-x Y-y, Zz-12, = 0.
X5-%y Y3-y, Zz~12,4

However, this is the equation of a plane passing through the points i, i,-Z—, 5. But
since singularity A) was excluded for the first three targets, the above relation
cannot hold and so |N| # 0, which completes the discussion.

It can be concluded in general, that if the critical surface of one station in
a network contains another station and its (first) three targets, then the critical
surfaces of both stations coincide. Next, suppose that target 4 lies on the critical
surfaces of both station 4 and station i. The same conclusion would hold for tar-
get 4 (observed by station i) replacing station i in (2. 3-23b) and the following deri-
vations, provided Zz # 0 and provided the four targets (I, 2,3, and 4) are not
lying in one plane. Consequently, if four targets lying on one critical surface are
also lying on another critical surface, then these two surfaces in general coincide.
This can be explained by the fact that all except four values in A-matrix and a-
vector for different critical surfaces in a network are the same from the beginning,
without any conditions,

Also this result has a plausible geometric interpretation. Since all the criti-
cal surfaces (one corresponding to each station beyond station 3) intersect in a
second order curve in the plane of stations 1, 2, and 3, they can be considered to
have five points in common in that plane (which is equivalent to having five param-
eters in common). Consequently, four more points in general configuration are
needed (none of them in that plane) for each critical surface to be determined.
If all four of them were lying in one plane, the second order surface would

degenerate into two intersecting planes. If these four points lie on the
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game second order surface,then the corresponding critical surfaces coincide,
since in general nine points are needed for the determination of a second order
surface. This also implies that if all ground stations observe the same four
targets then all the critical surfaces coincide and such a network is singular only

if all its points (stations and targets) lie on one second order surface.

2.822 Critical Surface if All Ground Stations Co-observe.
Should a network be singular, all the targets would have to lie on the corre-

sponding second order surfaces. If all the stations co-observe, all the existing

groups of targets coincide. Therefore, for singularity to occur, all the targets
(in general more than four) would have to be lying simultaneously on all the criti-
cal surfaces. But then all these surfaces would coincide as demonstrated above,
Consequently, with all the ground station co-observing the problem is in general
singular only if all the points of a network, i.e. all the stations and all the tar-
gets, lie on one second order surface. One exception is ''reverse singularity B)",
Which occurs when all the targets are in a plane on a second order curve, This
type of singularity is described in section 2.21. (Singularity A) could occur only
under similar conditions as described in 1. 34, namely, if all the targets lay in
a straight line. However, this is only a special case of "reverse singularity B}"
when a second order curve degenerates into two coincident lines.) If all the tar-
gets lie in a plane containing any ground station the solution is singular whether
all stations co-observe or not; however, for the reasons given in section 1. 34
this is not singularity A) in the usual sense for all stations co-observing, even
though geometrically it is closely related to it. To show that the solution is
singular in this case one can argue that an "observing" set of points lying in a
plane (here all targets) contains a member of the "observed' set of points. Under
this condition the solution is singular according to the first chapter. This is the

only other exception to the rule stated above.

Naturally, with all the points of a network lying on a second order surface,
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any arrangement of observations (e.g., exactly three stations observing all
the targets, replacing of certain stations, or finally "leapfrogging') makes an
adjustment singular, as it differs from the case when all stations co-observe

only by absence of certain observations, A geometric illustration of such a

configuration is presented in Figure 7.

2.33 Independent Derivation of Singularity C) When All Ground Stations Are

Lying in Plane.

Assuming z = 0 for all ground stations, important simplifications will take
place in all the formulas leading to and including M matrix which first appeared

in (2.2-19)., For instance, if station i is considered, some of the simplifications
taking place are:
A = Ag = Ay = -yy;
Ki = -¢; (X, %), Kg = -¢; (Xz-%z), Kz = -¢;(X3-Xp)
(c, is obtained by substituting x,, y, for x4, y, in cy);
Dy = ayxy + 2y +

where the a-coefficients become also simplified. Finally, it is obtained for M
matrix:

0 0 -yi(xiXg)a 0 -yy(Xi-X3)az -¥i(X3-X3)as 0 0 -yi(X;-Xa)a,
My = == 10 0 -y,(y-ya)as O -yi(yi-¥a)ae ~V(y:-Va)as 0 0 -yi(y;-Vs)as
0 0 -y (xy-xz)a 0 -cy(X-Xg)az -ci(X1=Xp)as 0 0 -cy(Xy-Xo)ay

(2. 3-26)

where the coordinates of targets 1, 2, 3 present in the a-coefficients necessarily
refer to the targets observed from station i, With these simplifications, it is

obtained for any row r in the submatrix A, of A:
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Figure 7

ILLUSTRATION OF CRITICAL SURFACES: All stations observe all
targets; all stations and all targets are on a second order surface.
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1'1] 'Yi(Xi"Xs)—
2

1
r=|r°| = D, Z (X + aY + 37 + 28| -Vi(yi-Ya) |- (2. 3-27)

T -Cy(X;-Xg)

Since 7 # 0 was stipulated from the beginning, this row will be a zero row if
X + aY + a3Z + g, = 0. (2.3-28)

This is an equation of a plane in X,Y,Z which passes through the first three
targets observed from the quad of station i; upon substituting the coordinates of
these three targets for X,Y,Z, the equation (2.3-28) can be shown to hold after
some algebraic manipulations. Therefore, for each further target lying in a
plane with the first three targets, the corresponding row in A matrix is a zero
row, Suppose that station i observes two or more targets not in plane with the
first three targets. It is seen from (2.3-27) that all such rows are linearly
dependet, since the (3 x 1) vector on the right-hand side is the same for all targets
observed from the same station. Consequently, only one non-zero row r can be
obtained from one station when the corresponding target is off-plane with respect
to the first three targets. Thus, the necessary condition to prevent singularity C)
was obtained: at least three stations must observe off-plane targets.

Next, the sufficient conditions for singularity C) to be eliminated will be
derived, Suppose that only stations 4,5,i obsérve their targets off-plane. Let
the corresponding non-zero rows in A matrix be denoted as r,, 1y, I, they are

associated with targets j,k, and m. Denote further
T = X + a3¥Y + a37Z + a,

which is non-zero for any variable point being off-plane with respect to the first

three targets in its satellite group; consequently,

T,#0, T(#0, T,#0.
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The submatrix of X, formed by r,, 1, T, is seen from (2.3-27) to have the from:

1

B TT, 0 0 |[Valkexo) Yaavs) calxaxa)
L= o - 51; Z.Te 0 ||ys(Xs-Xs) Vs(Vs-¥o) Cs(Xe—)
0 0 —-Dl; Zy Ty |¥i(Xi=%a) ¥i(Y4-Ya) Ci(X4~X2) |

(2. 3-29)

If this matrix is singular or non-singular, then A matrix and consequently A
matrix is singular or non-singular (singularity A) had been assumed eliminated).
Since the first matrix in (2. 3-29) is non-singular, L is singular only if the second
matrix is singular. But this occurs exactly when stations 4,5, i lie on a second
order curve with station 1,2, 3, as one may see from (1. 3-2), section 1. 3Z.
Therefore, the necessary and sufficient conditions for singularity C) eliminated
are: there must be (at least three) off-curve stations making off-plane cbserva-

tions. But this is exactly the result of section 1. 33.

2.4 Brief Discussion Concerning Replacing of Stations.

The principle of replacing of stations when theA ground stations are
in general configuration is simpler, but similax_’ to the same discussion with all
the ground stations in a plane. The simplicity of this problem for most cases
consists in the fact, that four ground stations-could be sufficient to form the
fundamental unit (provided all the points do not lie on one second order surface).
Consequently, any three ''old" stations co-observing with a new station contribute
to the expansion of a non-singular network; the sufficient conditions that it be so
are: no target in the new satellite group is lying in a plane with the three "old"
observing stations, and the new station is not lying in a plane with these new
targets. The first condition guarantees the unique determination of each new

target using the three unique stations (they are part of a non-singular network),
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and the second condition guarantees the unique determination of the new station
from these targets.

More sophisticated considerations are necessary in one special case which
will be only discussed without expressing it analytically. Suppose that the
smallest non-singular network consists of six stations. This may happen when
each quad observes only four satellite points. As mentioned previously, the
necessary condition to have non-singular A is that there be at least three
additional targets in a network beyond three targets per quad. When the ground
stations are not lying in a plane, such three targets may be distributed over
one, two, or three quads; if they belong to three quads, then a fundamental
unit consists of six stations; otherwise it consists of four or five stations and
in each of these two cases some three stations are observing all the targets.

In the case of six stations forming a fundamental unit, replacement of observations
may occur, After the first replacement,the sufficient conditions to expand the
network, mentioned previously, will apply also in this case. It is assumed that
station k replaces station 3, as it was done in section 1,41. A matrix with
general distribution of the ground stations for this replacement was presented in
Table (1.4-1). Clearing the column blocks in this matrix from the non-zero
elements beyond the first three rows in each row block up to the row block
"From s'" is done in exactly the same way as described in section 2.22. In

the three column block for station k, 'clearing' has to continue also for the

rows "From s", using the same first three rows of the row block "From k".
However, it is seen from Table (1.4-1) that the three coefficients k;, kp, and

k, for each of these additional rows will again contain second degree terms in the
coordinates of the corresponding target (in j,). Consequently, after this step is
completed, some second degree terms will have been added to all the rows
"From s'" of the last three column block. Therefore, the nature of the rows
"From s'" in this block is the same as that of the previous rows before the row

equivalence operations were started (each row contains some second degree
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terms). Finally, the "clearing' of the three column block for s leads to some
coefficients k;, ks, ks and to rows r in the last three column block which again
contain second degree terms in the coordinates of the corresponding targets.
Consequently, the structure of A matrix and of its A submatrix in particular
after these operations is the same as when three stations were observing all the
targets. As a matter of fact, the only rows r in A which changed are the rows
corresponding to station s. Consequently, the critical surfaces would be again
represented by second order surfaces; for stations 4 through k these surfaces
would be the same as when three stations observed all the targets, while for

station s the critical surface would be different.

2.5 Numerical Examples and Verifications of Theory.

Example 1. In this example, points with their coordinates given in Table

(2.5-1) are used to define a second order surface.

Table (2.5-1)

Coordinates of Nine Points to Define a Second Order Surface

Point X y Z

1 1,000,000 0 1,412,000

2 707,000 706, 000 1,410,000

3 0 1,002,000 1,414,000
11 500, 000 600, 000 1,269,000
12 -400, 000 200, 000 1, 095, 000
13 250, 000 320, 000 1, 080, 0600
14 650, 000 275, 000 1,224,000
15 105, 000 -520, 000 1,132,000
16 0 0 997, 000

The resulting surface, obtained numerically according to the method of Appendix
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6, is a hyperboloid of one sheet with the coordinates for the six main surface
points and the center given in Table (2.5-2). Next, point 4 is added to the

nine points of Table (2.5-1) so as to form a quad with points 1, 2, 3; an adjustment
is made for this quad observing points 11 through 16; the coordinates of point

4 are varied which results in six cases. With the points 11-16 as targets
there are noredundant observations present inthe adjustment. This experiment repre-
sents category 1, Adding one more target at the location +b brings one redundant
observation into the adjustment. With the same six cases as previously, this
experiment represents category 2. The result of the adjustment of the six cases
in both categories are given in Table (2.5-3). From this table it can be verified
mé& the problem is singular if all the points lie on one second order surface.

The best results are obtained for station 4 occupying the center of this surface.
Adding one further satellite point to the network improves significantly all the

non-gingular cases.

Table (2.5-2)
Coordinates of Six Main Surface Points and Center of the

Hyperboloid of One Sheet Defined by Nine Points

Point X y Z,
+a 413,256 1,378,290 1, 049. 000
-a 527,127 665, 999 925, 920
+b 238, 082 984, 345 991, 475
-b 702, 300 1,059, 940 983, 450
+c 479, 634 986,799 1,200, 740
-¢c 460, 748 1,057,490 774,180
X, 470,191 1,022, 140 987, 462
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Table (2.5-3)
Results of the Adjustment of One Quad

in General Configuration.

. 1
Case Point Catego’II:; (lN ()?ategory 2 Note
1 X 15,170 383 Best
2 + 4 88,140 1,629
3 +a -.4x10° -.5x10° Singular
4 + 32 1 191,400 12,500
5 +2a 68,930 6,731
6 + 32 43,320 5,580

Example 2. In this example six ground stations and twelve satellite positions

are used for observations in three quads, so that no redundancy is present, The

;c and y coordinates of stations 1 through 5 are given in Table (1.5-1) of section
1.5; for station 6, they are taken such as presented in case (1) of Table (1.5-7),
namely

Xs = 340,000, Yo = 790,000,
The z-coordinates of these six stations are given as follows:

z, = 0, z, = 30,000, Zg

il

70, 000,

z, = 20,000, zs = 40,000,  z

110, 000.

The three targets are divided into groups, j;, jz» js, €xactly the same way as it
was done in (1.5-3) of Example 3, section 1.5, The observations are taken
according to five different arrangements. The first three arrangements, denoted

as (a), (b), (c), are such that three stations observe all the targets. They are
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presented as follows:

1 2 3 4 .o B
(2) 2 3 4 5 veo 2
2 3 4 6 Ia
1 2 3 4 h
(b) 1 2 3 5 R P (2.5-1)
1 2 3 6 I3
1 3 4 5 oo R
(C) 2 3 4 5 “ee jg
3 4 5 6 ... s .

The next two arrangements use replacing of observations; they are denoted as
(ab) and (ac). The arrangement (ab) represents an intermediate step between

(a) and (b); namely, station 4 replaced station 1 in (b) for observations of j.

Thus,

1 2 3 4 ‘ e h
(ab) 2 3 4 5 et 2
1 2 3 6 i

Similarly, arrangement (ac) is an intermediate step between (a) and (¢); namely,

station 5 replaced station 2 in (a) for observations of j;. Thus,
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1 2 3 4 oo Bt
(ac) 2 3 4 5 e o

3 4 5 6 ...s-

The critical surfaces for (a) were computed using all the points appearing in
(2.5-1) except for target 182 of the group j,. The critical surface for j; was found
to be a hyperboloid of two sheets. Target 182 was then chosen to be exactly on
the critical surface; it remained in this position also for all the other arrange-
ments, In both (b) and (c), this location of target 182 happened to be near the
critical surface for j,, namely 290.5m and 4, 841.2m, respectively; these dis-
tances were computed using the method of Appendix 7. As a matter of fact the
chosen location of target 182, denoted as 182’, was computed as a "projection’”
of the original point 182 onto the critical surface of j; in arrangement (a); its

coordinates aregiven as:
182’ ... 575,704 943,123 1,522,290,

This constitutes category 1 in the present example, Next, target 182 was chosen
to be located at x, of the critical surface for j; of (a) and it was denoted as 182,.
This location gave the distances to j; of (a), (b), and (c) as 104,604m, 198,231 m,

and 4, 336 m, respectively. The coordinates 182, were found to be
182, ... 612,197 1,729,180 150,488,

This experiment falls in category 2. In the third experiment, target 182 was
chosen to be located at the point +2a of the critical surface for j, of (a) and it
was denoted as 1825,. The distances to j; of (a), (b), and (c) were computed as
104,604m, 13,787m, and 187,874m, respectively. The coordinates of 1824,

are given as:

182, ... 569,195 1,823,300 332, 398,
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This part constitutes category 3. Finally, target 182 was chosen to be located at
the point +5 a of the critical surface for j; of (a), and it was denoted as 1825,.
The distances to j; of (a), (b), and (c) were computed to be 418,416 m, 290,624 m,

and 479, 917Tm, respectively. The coordinates of 1825, were obtained as

1825, ... 504,542 1,964,480 605, 013.

This experiment falls into category 4. The results of all arrangement in all

categories are given in Table (2.5-4).

Table (2.5-4)

Results of Experiments in Example 2.

Arrangement Tr(N'l)
J Categoryl | Category2 | Category3 | Category4
(3) -.4x10° 474,100 95, 880 53,920
() -.3 x 10° 86, 360 2,750,000 37, 850
(c) +,3 x 10° -.5 x 10° 89, 650 58,120
(ab) +,7 x 10° 362, 800 2,337, 000 52, 300
(ac) +.1 x10° -.2x10° 75, 250 54, 420
@ 182 - (a) 0 104, 604 104, 604 418,416
<9
§ 182 - (b) 290,5 198,231 13,787 290, 624
n
A 182 - (c) 4,841,2 4,338.0" 187,874 479,917
182: 182’ 182, 1825, 1825,

The results in this table indicate for the arrangements (a), (b), (c), for which
the critical surfaces were computed, that the problem is indeed singular when
target 182 is on or very near its critical surface. The best results were obtained
in category 4 where target 182 was the farthest apart from the critical surface

of j3. Further significant improvement is to be expected when additional targets

190



are added to the present system (with d.f. = 0) and/or when more than four
stations observe simultaneously.

Example 3. In category 1 of this example all the points of a network are
chosen to be lying on one second order surface, a hyperboloid of one sheet. All
the arrangements in all categories of this example are be the same as in Example

2. The points of the network lying on the above second order surface consist

of stations 1, 2, 3,4, having the same coordinates as in Example 2 and targets
151, 152, 161, 171, and 183, given in Table (1.5-1), and further of the points
from the same table whose coordinates have been changed; the latter are given

in Table (2.5-5), as well as the center and the six main surface points of the

Table (2.5-5)

Coordinates of Some Points Related to Second Order Surface of Example 3

Point X y z
5 1,333,100 1,294,770 ~25,514
6 204, 600 839,635 270, 346
153 678,155 838,141 1,520,680
162 455, 046 520,662 1,581, 940
163 376,898 339,908 1,617,060
172 680,973 980, 757 1,762,480
173 1,286,180 1,319,310 2,097,610
181 577,858 703, 845 1,502,890
182 1,392,680 89,704 1,958,720
X, 698, 913 283,076 1,037,120
+a 559, 891 -236,543 985,553
-a 837,934 802, 695 1,088,700
+b 936,198 222,390 1,008,930
-b 461,627 343,762 1,065,320
+c 660, 968 336,280 603, 339
-c 736, 857 229,871 1,470,910
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critical surface (coordinates of all the points of interest were printed to contain
six digits). The lengths of its two real axes in order of magnitude and of the
imaginary axis are given as 540,361 m, 246541 m, and 438680 m, respectively.
In category 2, point 182 is chosen to coincide with x,. In category 3, it is chosen
to coincide with the point - 2b, and in category 4 to coincide with the point -5b;

its coordinates in these two categories are given as

224,341 404, 448 1,093,520

and

-487,517 586,506 1,178,120,

respectively, The adjustment results of the five arrangements in four categories
are given in Table (2.5-6), From this table it can be verified that the problem
must be singular for any arrangement of observations when all the points of a
network are lying on one second order surface. In general, results of this
example are somewhat inferior to those of Example 2, In particular, category 2
is very weak, Here again, much better adjustment is to be expected by adding

‘of redundant observations. It can be illustrated in the following experiment,

Table (2.5-6)

Results of Experiments in Example 3.

Tr(N%)
Arrangement Category 1 | Category 2 | Category 3 | Category 4
(a) -.1x10° .29 x 107 136, 600 67, 960
(b) -.7 x 108 .15 x 107 191, 900 79, 880
(c) -.1x10° .67 x 107 79,210 75, 460
(ab) -.8 x 10% .14 x 107 116,100 51,760
(ac) -.8 x10° .69 x 107 56,140 69, 640
182-(a), (b), (c) 0 246,541 246,541 986, 164
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Example 4. This example is exactly the same as Example 3, except that all
the six ground stations are co-observing. The results for Tr(N?) in category 1

through category 4 are given respectively as
-.3x10%°  ,36x10° 3,927  643.5.

These values indicate highly significant improvement for all non-singular cases as
compared with Example 3, due to the fact that all the ground stations are co-observ-

ing. Also, singularity due to all points lying on one second order surface is

clearly evident.

Example 5. In the first experiment of this example, all the ground stations
are again co-observing and all the points of the network are lying on one second
order surface. Incontrastwith Example 4 where the critical surface was quite general
and where the points were generally distributed on that surface, the second order sur-
faceisnow represented by a sphere (centered at the origin and having the radius equal to
1,000,000 m) and most of the points are symmetrically distributed. Altogether, there are
eight ground stations (numbered as 51, 52, ..., 58) and eight targets (numbered
as 501, 502, ..., 508), all lying on the sphere. Their coordinates are given in

Table (2.5-7). This configuration yields

Tr(N') =-,2x10°
from an adjustment. Clearly, the problem is singular.
Next, the location of station 58 is varied. Altogether, there are nine loca-

tions occupied by station 58, denoted as 58, through 585 Point 58, is located at

the center of the sphere, points 58, through 58; inside the sphere, point 58, on
the sphere, and points 585, 585 are located outside the sphere. All the other
points are unchanged and all the stations are again assumed co-observing, The
varying coordinates of station 58, its distance from the sphere (on which all the

other points are lying) and Tr (N?) obtained from an adjustment are presented
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Table (2.5-7)

Coordinates of Sixteen Points of Example 5.

Point X y Z
51 0 0 - 1,000,000,00
52 0 - 707,106.78 - 707,106.78
53 612,372,43 - 353,553.39 - 1707,106.78
54 612,372.43 353,553.39 - 707,106.78
55 0 707,106.78 -  707,106.78
56 -612,372,43 353,553.39 - 707.106.78
57 - 612,372.43 ~ 353,553. 39 - 707,106.78
58 0 - 939,692.62 - 342,020.14
501 0 0 1,000, 000.00
502 0 - 707,106,78 707,106.78
503 612,372.43 - 353,553. 39 707,106.78
504 612,372.43 353,553.39 707,106.78
505 0 707,106.78 707,106.78
506 -612,372.43 353,553.39 707,106.78
507 - 612,372.43 - 353,553.39 707,106.78
508 0 - 984,807.76 173,648.18

in Table (2.5-8). The results from this table again verify that a singular
solution is obtained when all the points are lying on one second order surface
{(here sphere) and that very strong solutions can be obtained with all stations

co-observing.
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Table (2.5-8)

Nine Experiments Corresponding to Location of Station 58.

Point b4 y A z fxl'?)ilfltasr}lgc;;re Tr(N™)
58, 0 0 0 | 1,000,000 135.5
58 0 |- 200,000 0 800,000 137.0
584 0 |- 400,000 0 600, 000 148.3
58, 0 |- 600,000 0 400,000 169.7
58 0 |- 800,000 0 200,000 207.0
58 0 |[- 900,000 0 100, 000 263.5
58, 0 |- 1,000,000 0 0 -.6, 10°
584 0 |-1,100,000 0 100, 000 319.4
58 0 |{-1,200,000 0 200,000 287.3
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2.6 Conclusions

Perhaps the most important theoretical result in this chapter is that when-
ever all the points (ground stations and targets) of a network lie on one second
order surface the network is necessarily singular. An illustration of such a
configuration appears in Figure 7.

Some special cases of singular solution arise when all the targets observed
by a certain station (they can be in one or more satellite groups) are in a plane
which contains this station (mostly called singularity A)), or when all the targets
of a network are in a plane on a second order curve (this was called "'reversed
singularity B)"). When all its points lie on a second degree surface, the network
is singular even if all the ground stations co-observe; this is the only case of a
singular problem when all the stations co-observe, except for the special cases
when all the targets in a network are in a plane containing one ground station,
or when they are all on a second order (plane) curve. Naturally, when all the
points are on one second order surface, the network is singular no matter how
the observations are arrangéd (""leapfrogging", etc.).

When only a limited number of stations co-observe, the situation is some-
what more complicated. In practice, four stations forming quads may co-observe
a set of targets. With three stations observiﬁg all the targets, it was found that
an adjustment of range observations is singular if for each quad the stations and
the corresponding targets lie on a specific secbnd order critical surface. In
sections 2.23 and 2.31 the method is given to compute such critical surfaces
explicitly. All these critical surfaces intersect in one second order (plane)
curve containing the above three stations. This geometric property is illustrated
in Figure 6. If the special singular cases due to singularity A) or "'reverse
singularity B)" do not exist the network has a non-singular solution if there is at
least one (satellite) point located outside the corresponding critical surface.

When utilizing the concept of station replacement, it was found that besides
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the above two special cases singular solutions would again be associated with
specific second order surfaces. However, these were not expressed explicitly.
In this case sufficient conditions for non-singular networks stipulate that after
an expansion of a non-singular network the new network is still non-singular if
the targets of any '"new'' satellite group do not lie in a plane with the "old" three
stations and that the fourth, '"new' station does not lie in one plane with these
targets.

The main results of this section are summarized in Table (2.6-1).

For the reasons mentioned in section 2.1, geodetic networks are not likely
to be singular when the ground stations are generally distributed in space. How-
ever, when the number of redundant observations is small or zero, an adjust~
ment may be sometimes quite weak. Adding extra observations can significantly
improve the quality of the solution. Several computer runs indicated that some

very good results can be expected with more than four ground stations co-observing.
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Table (2.6-1)

Necessary and Sufficient Conditions to Avoid Singular Solutions

When Ground Stations Are Generally Distributed

Sufficient Conditions

Type of Arrangement of | Necessary Conditions to Note
Singularity Observations Prevent Singularity to Prevent Singularity
Singularity A) No station should be in a plane | No station should be in| This singularity is as-
(or closely re- Any with all its observed targets a plane with the corre-| sumed non-existent in
lated singularity) (distributed over one or more | sponding satellite analysis of global
satellite groups) group singularity
Reversed Sin- Targets should not be all ina | The same as the nec- | This singularity is as-
gularity B) Any plane on a second order curve | essary conditions sumed non-existent in
analysis of global
singularity
Avoid all satellite groups (one All the critical surfaces
group per quad) containing tar- can be computed explic-
Stations 1, 2, 3 |gets lying all on the corre- The same ags the itly. They all intersect
Observe all sponding second order criti- | necessary conditions in the plane of stations
targets cal surfaces (one surface per 1, 2, 3 on a second order
quad). Always: Avoid all curve containing the
points lying on a second order three stations. If four
surface points outside this plane
are common to some
Global critical surfaces then
Singularity these surfaces coincide

Station replace-
ment (e.g., leap-
frogging)

Always: Avoid all points lying
on a second order surface

Avoid certain second
order surfaces not
expressed explicitly

All stations ob-
serve all targety
(all stations co-

Avoid all points lying on a
second order surface

The same as the
necessary conditions

observe)
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APPENDIX 1

EFFECT OF ADDITIONAL OBSERVATIONS ON VARIANCE-COVARIANCE
MATRIX OF THE SAME SET OF PARAMETERS

It is a plausible statement that a weight-coefficient matrix Qx of the
unknown parameters X '"improves" with additional observations, and if
these are affected by random errors coming from the same population as
the original set of observations, the variance of unit weight being thus
the same, then also the variance-covariance matrix Z, of the unknown
parameters "improves'. The word "improves' is used to describe the
fact, that Q],; - Qx is a positive (semi-) definite matrix, denoted also
as Qx - Q, = 0; here Qi stands for the case when only original obser-
vations were considered and @, when also additional observations were

included in the least squares adjustment. This also means that

Tr(Qx) - Tr(@y) = 0

or

Tr(Qx) = Tr(Qx).

This last expression can indeed be interpreted as an improvement in a
weight coefficient matrix Qx due to the additional observations.

The asserted statment will be proved using "A method" of the least squares
adjustment, such as treated in [5], since this method has been used through-
out in treating ground stations - satellites range observations. For the
original group of observations, which can be considered as consisting of the
minimum number of observations andthus d.f.=0 (degrees of freedom), itholds

that
V]_ = A]_X + La (Al—la)

and
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N = Al P A, (A1-1b)

where V, stands for the residual vector, A: for the coefficient matrix of
the observation equations (Al-1a), L, for the constant vector, N, for the
coefficient matrix of normal equations and P for the weight matrix,
assumed to be positive-definite, all for this group, denoted by the index .

When all the observations are included, it holds that

v AX + L

and

It

N ATPA (A1-2)

with similar description of this group. It is assumed that P. and P,,

which compose the P matrix,are uncorrelated. Furthermore,
_ V1 Ay Ly
Vel A~[A2_]’ L=
Thus, it follows from (A1-2) that

N = N]_ + Ng
where

N; = AP A, , (41-3)

similar to (Al-1b).
The normal equations for the original observations are
NiX+Up =0

with U, given as

U = AlP I

and for all the observations

with




Now, two cases arise, In the first case, N{ is considered to exist, in
which case N; is of full rank and no constraints for the parameters are
needed. This, in practice, could be equivalent to fixing of at least six
coordinates for range observations alone, which would mean the the corre-
sponding rows and columns are deleted from N;.

The second case is of practical significance for fundamental networks
using range observations alone, The rank deficiency of both N; and N is such
a network is six in general which means that at least six constraints have to be
used to make an adjustment possible. Then the augmented coefficient matrix
of normal equations is assumed to have the full rank. For fundamental net-
works exactly six linearly independent constraints are used.

1. According to [5],when N, is invertible the weight-coefficient matrix

for the parameters is given as

while for all the observations it holds that
Q. = (Ny +Np)™.
Making use of (Al1l-3), this last equation can be developed as
Qx = N7 - N AL (P} + A, NI A1) Az NT .

Since P, , N; are both positive-definite here, (P; + Az NilAg)']L is positive-

definite and S positive (semi-) definite, where
S = NyAz (B3 + A;NTAL) A, N7

Due to N; positive definite and N positve (semi-) definite, N and so also

N* = Q, are positive definite matrices.

Now

Q = Qx- 8
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and
Tr @) = Tr @) - Tr(S)
where

Tr@,) >0, Tr@.) >0, Tr(s) 0.
Thus,
Tr (@) < Tr (Qx)
indicating an increase in accuracy due to added observations to the original

set.

2. Using six constraints among the parameters, the following system

is to be solved when all the observations are considered:
NX +U =290
CX +We=0

where the parameters can be rearranged in such a way that

X = [Ca Cp] gbj

where C, is a (6 X6), non-singular matrix. Then

X, = ~CaCyXy - CaWe (A1-4)
from which

Qra = TQx T (A1-5)

where Q,, is positive (semi-) definite and T = Ca Cy .
With A, , Az partitioned in the same way as C, it holds 4for the obser-

vation equations where all the observations are included, that

_[An Alb] L '—Ll ]
Xy,

‘—Aaa Agy e
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Upon plugging X, from (Al-4) into these equations, the following observation

equations from which the parameters X, have been eliminated, are obtained:

"Iq - A CoWe |

_ “Awy - A C: Cy,
L_IQ "A_a C: WOJ

V = g
LAz, - Az, Cp Cy

Xy +

This can be written as

<
1t

AX, + L,
where

~ Ay
A= 2

L.

Ags stated before, due to the constraints, the solution of such a system

now exists, whether for the original observations (to which Xl is pertaining)
or for all the observations included (to which A is pertaining). This system
is analogous to the one investigated in Part 1., and so the conclusions are

the same, namely

Qx - Qn, iS positive (semi-definite) (Al-62)
or

Tr@Qx,) < Tr @) - (A1-6Db)
Now, analogically to (A1-5), it holds that
Q, = TQ: T . (A1-T)
From (Al-5) and (A1-7) it follows that
Qi, = Qx, = T(Qq, = Q)T
which is positive (semi-) definite, due to (Al-6a). Thus,

Tr(Qx,) S Tr(Qx,) »
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which together with (Al1l-6b) yields

Tr(Qy) < Tr (Q:),

the same result as in the Part 1., indicating an increase in accuracy due
to added observations to the original set, while preserving the same

parameters as unknowns.
These and similar aspects are considered in different publications, for
instance in [12 ]. An interesting treatment connected with the adding of

observations and/or constraints to an original set of observations is presented

in (11 7.
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APPENDIX 2
BEST FITTING PLANE

An equation of a plane can have the form

(r-r)-n =0,
or

r n-ro-n =0,

where ro = (X0, Yo, Zo) | represents a radius-vector to a certain point in the
plane,r = (X,y,2)" a radius-vector to a general point in the plane and

n = (a,b,c¢)’ aunit normal vector to the plane, in which case ‘W = 1
must hold. In absolute value,ro - n = d represents a perpendicular distance
of the plane from the origin, and since r-n = xa+yb + ze¢, the equation

of a plane is written as

xatybt+tzc+d = 0.

In the following each of the points to which the plane is fitted will
be considered as lying in the plane after the adjustment. Thus the deviations
from the plane will be regarded as due to "errors' in the "observations",
which will be represented here by the actual cartesian coordinates of each
points, leading thus to three "observations' per point. Denoting all the
adjusted values (parameters, observations) by superscript a, it will hold
for a point i:

i a® +yfbP+zlE+ad = 0 (A2-13)

(@ + *® + (*)F -1 = 0. (A2-1b)

There will be as many equations of the type (A2-1a) as there are points
involved, say r, and one equation of the type (A2-1b). This corresponds to
the mathematical structure of the general L, S, method with constrains

such as described in [5 ], namely
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F(X*, L") =0 (A2-2a
(rxl)

and

G(X*) =0 (A2-2Db)
(sx1)

where X* are adjusted parameters, which in the present case are (a*, b%,
¢®, d®)7, and L? adjusted observed quantities, here (x*, yi*, z°; X3, V3,
z2; ...; X%, y&, z&; ...). Inthe above mathematical model, (A2-22a)
is represented by r equations of the type (A2-1a) and (A2-2b) by one equation
(A2-1Db).

After the linearization, {A2-22) and (A2-2b) become

AX+BV+W = 0 (A2-3a)
CcX +W.= 0, (A2-3b)

where all the notations of [5 ] are preserved, namely:

X = dX...u corrections to the u approximate values of parameters, %x°.
V ...n residuals, corrections to the n observed quantities, L’

A = E—S?C.Jo, R (r x u) matrix of coefficients

B = FB_E ... (r xn) matrix of coefficients
LoLido, s
raG™ . - .

cC =, 53X ... (8 xu) matrix of coefficients due to the constraints
- o)

= FX° L%... r-vector of misclosures
.= G(X%) . s-vector of misclosures due to the constraints.

In the present case the dimensions are as follows:

r ... number of poits to be used for fitting
u=4 ... for parameters a,b,c,d
n=3r ... number of "observables",i. e, X,¥y, z coordinates of the poinis used

s=1... one constraint, namely (A2-1b).
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Accordingly,using the structure (A2-1a) and (A2-1b) the matrices and vectors in

(A2-3a) and (A2-3b) will be:

. [aa v
. . x1
A:Xf’Yf’Zfl‘;X:’db,V= Vyr |3
r % 4) . - @x l) de (n2 l)
. | Vzi
L dd
[—aobocoooo 000
B =000 a°b° c° 000 |; C =a%2p°2c°0]; (A2-4)
(r xn) i : 4 H (lx‘l)
000 000 2°b° °
W = ‘-Xf 2yl W = (a9 b + (c%® - 1,
(7= - : o (1x1

with a°, b%, ¢, d° as approximate values of the parameters. Furthermore,
the weight matrix P will be taken as a unit matrix, as there is no reason why
some coordinates should be weighed more heavily than others; also, with
this P = I,the adjustment will eventually render % (distance from the plane)®

to be a minimum such as demonstrated in A2, 2, a condition which is indeed

desirable.

A2.1 Transformation of General Method

Adjustment into the "A Method"

From the mathematical structure for the "A method", F(X*) - L* = 0,
it follows for error considerations that AdX-dL =0, or
dL = AdX, (A2-5)
where d L can represent errors, coming from a certain population, which
affect L°, observed quantities. The variance-covariance matrix of d L, which
is identified with the variance-covariance matrix of L°, denoted T v, is a

measure of uncertainties in the observations. The weight matrix P is then

taken as
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P=3rk. (A2-6)

The observation equations

V=AX+1L,
subject to the condition
V' PV = min.,
yield for the parameters:
X=-(ATPAY ATPL, (A2-T)

as presented in [5 1.
From the mathematical structure for the general method,

F(X? 1*) =0, it follows anologically that

-BdL=AdX. (52-8)
Here Zg = BZ» B', which using the same P as in (A2-6), gives

Tear = BP'BL (A2-9)

Linearization of the general method model gives

-BV=AX+W, (A2-10)
Subject to the condition
V' PV = min. ,
thig yields for the parameters:
X=-[ATBP'BY A" AT(BP'B)'W, (A2-11)
as derived in [5 ],
If the notation
P= (BP'BN? (A2-12)

is introduced, (A2-11) reads as
X=-(ATPA'ATPW. (A2-13)
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But this is the result which will be obtained from (A2-10), if the equations

are written as "transformed observation equations"
V=AX+W (A2-14)
and with the associated weight matrix, 5; in other words,the equations
V=-BV = AX+W (A2-143)

are given weights

P= (S (A2-15)

while in "A method'" equations V= AX + W were given weights P = (Z,)%
It remains to be shown that in the general method

VPV = VPV, (A2-16)

so that the correct use of "transformed observation equations' (A2-14)

with the weights (A2-15) be verified. It holds for the general method that
V=P'B(BP'B)'BV
and, consequently,
VIPV=V B (BP'B)'BV,
On the other hand, making use of (A2-14a) and (A2-12), it holds that
VPV =V B(BP'B) BV

which proves (A2-16),

As a conclusion, it follows that whenever it appears advantageous
(reducing of dimensions etc.), the "transformed observation equations' and
appropriate weights may be used for "A method" adjustment as given by
(A2-144a) and (A2-15), The A matrix is thus the same in both methods and
so is the constantvector, W =L. Also all the results, namely X, V' PV,

s, 2, (as seen from (A2-11) and (A2-13))are the same whether the general
method or "A method" with the "transformed observation equations' is

used,
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A2.2 "Transformed Observation Equations'

in the Best Fitting Plane Problem.

A2.21 General Considerations.

Due to the special form of the B matrix in (A2-4), P matrix
will be particularly simple. Since P =1, then BP'B' will be of dimensions
(r x T) with zeroes as off-diagonal elements. Furthermore, the diagonal
elements will be all equal to (a%? + (b9® + (¢)® which should be close to one
(in the first iteration and in last several iterations — when the iterative

procedure is used — it should be equal to one for all practical purposes]).

Thus
P=1
(x7)

and

V=AX +W

(r21)

with

CX+W,=0

(1:1)

with A, X, W, C, W, the same as in (A2-4),
Next,the vector V will be interpreted. The original vector V was

composed of three vectors, such as

Vi = Vyi s
Va1

connecting the "measured point i'" with its "adjusted position'. Thenn - v,
is the projection of this vector on n, normal to the plane, or the (perpendicular)
distance of the existing point i from the plane. Due to V = -BYV and due to

the special form of the B matrix it follows that

._n.Vl__
V=- n:vs
D-Vr




Thus the absolute values in V represent distances between all points in

consideration and the best fitting plane. VPV thus represents 2 (distance

from plane)® and it is a minimum, which is the desired property.

A2,22 Approximate Values of Parameters.

The starting approximate values of the parameters may be
obtained by fitting a plane to the first three points, which have ry, rz, r;
as radius-vectors. Formulas to be used:

(8) Mp=Tp-TI; TMa=Tz-T

a

() n=2&EH3 =|p |, /PEibrc=1
|rlexr13|

{fc¢) d=-r,.n = -r3.n = -r5 . 1N,

These values of a, b, ¢, d are used for the first iteration.

The misclosure for point i, w;, will be according to (A2-4):

W, = xa ¥ yb +zie +d, (A2-17)
where the superscripts have been omitted. Because of (¢), W} = wg =
ws = 0. LetP=(%, ¥, )7 denote the projection of P =(x, y, z)" on the
plane., Thus

* 5. 2 = (x5, 2) 4,
where| L] is the distance from the plane through 1, 2, 3, to point P, Since
P is in the plane, it must hold:
(ax + a®L) + (by+b%L) + (cz+cfL) + d = 0,
or

-4 (af+bP+cP)y=ax+by+tcz+d

But the right side is exactly the misclosure for point i, as seen from
(A2-17), while (a® + b® + ¢ = 1. Thus 4= - w, and the distance of any
point from the plane through 1, 2, 3 is determined by the absolute value

of its misclosure, % w, |, in the first iteration.
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A2.3 Summary of Formulas and Sequence of Operations for

the Best Fitting Plane Program

The program for the best fitting plane will use the "A method"
adjustiment procedure such as described in |5 ], taking advantage of the
particular features inherent in this problem, namely "transformation of
observation equations' (as shown in section A2.2). Iterative procedure will
be used until the values of the parameters (or Zpvv) remain practically
constant, Summary of the steps in this adjustment:

1) Data consists of (x,y, z) coordinates of all the r points used

for the best fitting plane. The coordinates may by scaled,
depending on their nominal values.

2) Using (first) three points, compute a°, b°, ¢°, d° as outlined in

(a), (b), (c) of A2, 22,

3) Carry out the "A method" adjustment with constraints, where

the observation equations have been "transformed", by plugging

for standard matrices:

- :
A=jxf’yi’°zf"1-k
(I‘ x4) [ ; _l

L =[xfa®+ yeb® + z2c® + @
(rxl) - : 2

(c)= T22° 21° 2¢° 0 |
1% 4 -

We= ()% + (B°)° + () - 1

(lxl ’

with the unit matrix (r x r) as the weight matrix.
4) Tterate as long as desired; at each step the values in W, C

k4

W, change, due to changing values of the parameters,
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Since A (and P) does not change, N and N* matrices are the

same throughout.

5) The final absolute values of the residuals are (perpendicular)

6)

distances of the points from the best fitting plane. The

final Zpvv represents Z (distance from pla,ne)z. In practical
computations the average distance from the best fitting plane

was used as a reasonable measure as to the closeness of

all the considered points from a plane.

The last step is optional, It makes it possible to compute the
adjusted ""observations', i.e., the projections of all the considered
points on the best fitting plane. It can be shown that they are ob-

tained from

¢

1* = L* - BV

-

or

xf = x - av,

— b ~
yi = y; - bvy
zf = zd - cvy

where ’\71, corresponding to the ith element of f{f, and a,b,c, are

all taken from the last iteration. All these projected points can

be further transformed into the "local coordinate system' (which has
the first point at its origin, the second point on its x-axis and the
third point in its xy plane), using the procedure outlined in

section 2,231, in (2.2-12) through (2.2-~17). Necessarily, all the
projected points are in the xy plane of the local coordinate system.
Using the procedure of section 1, 322, it can be determined whether
they are all lying on or near a second order curve. Since they

are given in the xy plane of the local coordinate system, the basic

and the local coordinate systems of section 1. 322 now coincide.
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APPENDIX 3

CRITICAL CURVE IN LOCAL COORDINATES AS OBTAINED ANALYTICALLY
BY FITTING SECOND ORDER CURVE TO STATIONS 1 THROUGH 5

A general second degree curve such as ellipse or hyperbola has five
parameters to be determined, namely xo., yo specifying its position, &
specifying its orientation and a, b determining its size and shape. These
five unknowns can be solved for from five equations which may be furnished
by five distinct points lying on the curve. It will now be shown that fitting
of the second order curve to the stations 1 through 5 (which lie on the
critical curve as it was shown in the part following (1.3-2)) will furnish
the same A, a as expressed in (1.3-5) through (1. 3-5c).

For the proof, the same local coordinate system will be chosen,
having station 1 at the origin and station 2 on the x axis, stations 3, 4,
and 5, being generally distributed in the x,y plane. The equation of a

second degree curve can be written as
guX + 281Xy + gy + hix +hy +k = 0. (As-1)

Usingthe fact that the station 1 lies on the curve yields k =0 . Upon

division by g,; (assumed non-zero) (A3-1) becomes:

¥ +2biXy + bypy® + bix +byy = 0, (A3-2)

Assumption g, # 0 is reasonable, since, of the stations 1, 2, 3, any one
can be chosen as the origin of the local coordinate system and any one as
determining the direction of the =x-axis. In the matrix notation (A3-2)

becomes
x'Bx + x'b

il
<

where




and where B, b are analogous to A, a of (1. 3-5). Since station 2 lies on the
curve, (xz, 0) can be plugged for (x, y) in (A3-2), giving by = -xz, upon

which it becomes
b@yg +2b12Xy + bgy = X(Xg - X).

This last equation should be satisfied for stations 3, 4, 5, yielding thus three

equations in three unknowns, namely

3 2X3stY:sl bz X3 (Xz ~ Xa)
1 ; :
Vai2%aVe Ve | x | Pr2| = | % e-x)| . (A3-3)
_}’2,‘ 2X5Ys IYS_l '_bz B _Xg (Xp ~ Xs) |

The last step consists of solving for bge, bp, bs from (A3-3), for

which the inverse of the (3 X 3) coefficient matrix will be used in the form

031 Om; Ugq

Oy O Ox

o=

where D represents the determinant of the coefficient matrix and &,;, the

cofactor of its ijth element. Thus,

1

be = '5[0‘11X3(X2"X3)+0‘21X4(X2’X4)+0‘31X5(Xz"X5)],
1

b = B’[alBXS(Xz‘Xs)+0‘mX4(X2'X4)+0‘32X5(X2'X5)],
1

bz = B[a].SXB(XE_xS)'*'azBXA:(XE—Xé)+O‘33X5(x2"x5)]

where it can be shown that with the notations of (1.3-4a) through (1.3-4c):
D =-2ys C,
Furthermore,
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baz = % [_X}i‘& (X =~ X5) Xal(Xz — X3) = Vs(Xs5 ~ Xz) Xy (Xz — Xa) ~ValXs ~ X)Xz ~ Xs) |,

(As-4a)

-1
bi2 = 50 T [¥4 Vs (s = ) Xa(Xe = Xa) +YsVs (o = o) Xa (o = Xa) +Va¥a (2 = Ve) x
x X5(Xp = Xs)1, (A3-4b)

1
= —y‘a C [Y4YS (y4X5 - X4y5)X3(X2 - X3) +y3y5(xsy5 - YSXS) XA:(XS - X‘L) +

+ Y3Ya(VaXs — X3V ) Xs(Xz — Xg) ]- (As~-4c)

After some algebraic manipulations, it is seen that the expression in brackets
of (A3-4a) is equal to B, the one of (A3-4b) to x;C - ysA and the one of
(Ae-4c) to -xX2XaC + Xgya A + y3 B. Thus, besides by; = 1 and b, = -xs,
it also holds that

B
b%"c!
1 A x
blz“z(c Ys)’
- X _ A __ B
bz X3 Xsc YSC,

which are exactly the same values as those for A, a in (1.3-5b) and
(1.3-5d).

Thus, fitting of the second order curve to the ground stations 1 through
5 is equivalent to determining the critical 1loci for any further ground

stations causing singularity B) to occur.
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APPENDIX 4

COMPUTATION OF CANONICAL FORM OF SECOND ORDER
(HYPER-) SURFACE, GIVEN EXPLICITLY

A4.1 Preliminary Transformation of Coordinates.

Whether dealing with the n-dimensional, three-dimensional or two-
dimensional spaces, the equations transforming the coordinates of a vector
from one basis into another are essentially the same. In the subsequent
derivations only orthonormal bases will be considered. If x ' denotes an
array of coordinates of a vector in a new basis and Y an array of
coordinates of the same vector in the original ISasis, the following relation
holds:

Y = RX' (A4-1)
where R is an orthogonal matrix whose ijth entry is equal to the dot
product of the ith basis vector in the original basis and the jth basis
vector in the new basis, Y and X being written as column vectors.

Should the (coordinate) vector x’ representing a physical point P,
emanate from the origin of the new coordinate system (with the axes in
the direction of '"new basis vectors") which is different from the origin

of the original coordinate system, then Y is to be written as
Y = X-Xo,

where X and Xo , both in the original coordinate system, represent the
radius-vector of the point P and the radius-vector of the origin of the

new coordinate system respectively. (A4-1) is thus written as

X - X = RX’ (A4-2)
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where R can be written as
R=[tg t5 ... .1. (Ad-3)

Here t, , a column vector, represents the ith 'mew bagis vector” in the
original coordinate system, and is orthogonal to every t; vector, j # i
In particular, three and two-dimensional spaces will be of main
interest here. Thus, for the three-dimensional space, when the original
coordinate system has the axes represented by unit vectors (orthoncrmal

basis) i, j, k, and the new system by i', j', k', both being the right-

handed coordinate systems, (A4-2) can be written as

lcos (i) cos(ij) cos (ik)

’

X-Xo = |cos(ji) cos (jj) cos(GkH | x, (Ad-4a)
cos (ki) cos (ki) cos (kk)

indicating that for the orthogonal (3 X 3) R matrix, it holds that

R = [t tp ts] (A4-4b)
where
— LA - A i ca 4
cos (ii) cos ij) cos (11{}}
ti=|cos 1), to=|cos(i)|, ta=|cos Gk
|cos (ki | cos (kj" cos (kk’){
(A 4~4c)
Analogous relations will hold for the two-dimensional space, i.e., plane,

with the k, k' coordinate axes eliminated and angles measured counter-
clockwise as to be compatible with the above system. If o denotes the
angle between the axes represented by i’ and i (orj/ and j) in this

order, then as counterparts to (A4-4a) - (Ad-4c) there will be:
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cos sinw

- = 4...
X - X _-sino cosd | (Ad-5a)
and
R = [t1 tg], (A4-5Db)
with B N B _
cos o I sino
= | = 4_
tl ‘:’_ Sin a_‘ 3 t? POSa~‘ (A 50)

A4.2 Canonical Form of Second Order (Hyper-) Surface.

As a starting point in this discussion, the second degree (hyper-) sur-

face will be considered such as
xAx + xa +c¢ = 0, (A4-6)

where A matrix, a vector and constant term c¢ are given explicitly, x
being the coordinate vector of a variable point.
A new coordinate system, called canonical, is desired such that after

a transformation of coordinates, the equation (A4-6) will be of the form
rT
x A x =1, (A4-7)

I 3 » = . » -
where x is the coordinate vector of a variable point in the canonical

coordinate system, and A is a diagonal matrix
A = diag. (Mg, Ag... ). (A4-Ta)
Similarly to (A4-2), it holds that

or

X = X + Rx’ (A4-8)



where x,, origin of the canonical coordinates, and R areas yet unknown.

Since R 1is an orthogonal matrix, x' can be expressed from (A4-3) as

/

x = R(Xx~-X0), (A4~-8a)

which plugged into (A4-T) gives

®-%) RAR (x-%) =1 . (A4-9)
Denoting
RAR = M, (A4-102)
for which
A=R MR, (A4-10b)

(A4-9) becomes

1l
<

X Mx - x'2Mx, + xJ MXo - 1 (Ad-11)

Once M is known, it will be possible to determine A and R matrices.
In order to determine M matrix and x, vector, comparison between (A4-6)
and (A4-11), expressing the same surface, will be made, taking into account
that the equation (A4-6) can be multiplied by any constant k, as yet unknown.

This gives raise to the following relations:

M = kA, (A4-12a)
-2Mx, = ka , (A4-12b)

and
X Mx -1 = kec. (Ad-12¢)

Substituting (A4-12a) into (A4-12b) gives

X = -zA’a, (A4-13)




which has a unique solution for any second degree (hyper-) surface with

non-singular A. Upon substituting (A4-12a) into (A4-12c),the expression

1
= ——— A4-14
k Xo Ax,-¢ ( )

is obtained, which substituted into (A4-12a) gives

1
-  ———— e . 4-
M = kA ‘OT A . - A (A 15)

Whenever the (hyper-) surface contains the origin of the coordinate system
to which (A4-6) refers, called here the original coordinate system, then

¢ = 0 asit can be seen from (A4-6); (A4-14)with (A4-15) then become

o1
k = m (A4-14a)
and 1
M =kA = A, (A4-15a)

x4 Ax,

while (A4-13) remains unchanged.

Although this approach and notations are somewhat similar to the
derivations presented in [1], Annex J4, it is different in that here the
(hyper-) surface is given by an equation such as (A4-6) rather than by a
set of given (errorless) points.

To compute A, R from (A4-10a) or (A4-10b), standard procedures for
finding eigenvectors and eigenvalues of a real symmetric matrix, which

are always real, can be used as outlined in [6], Chapters 19 and 21, or

[7], Chapter 9. The solution for (A, Az, . . .) in (A4-7a) is obtained
by solving
| M -Ix] =0
and the matrix R in (A4-3) is obtained by solving for (t,,tz, . . .) vectors
from

(M - Ix;)ty = 0
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for every i, subject to the condition that each t; has a unit norm.
However, due to M = kA , eigenvalues and eigenvectors for A matrix
may be computed, from which A and R are easily obtained. If

Ay = diag. (_Kl s, As,...) and R, = (t., T, . . .) constitute the

eigenvalues and eigenvectors of the A matrix, then

A = kA, (Ad-16a)
and
R = R,. (A4-16Db)

From the equation (A4-7) it is seen that

1
Ay = ag
or
1
= Ad-T7
. Vo A ( )

where a; represents the length of the ith axis in the canonical coordinates.
Direction of this axis with respect to the orignial coordinate system is
given by the corresponding vector ti .

For computation of eigenvalues and eigenvectors of a real symmetric
matrix A (or M), an iterative method such as Jacobi method can be
advantageously applied, namely when digital computers are used; it is
described in [8], pp. 487-492. However, when working with three and two-
dimensional spaces, eigenvalues can be quickly found in closed form by
solving for the roots of third and second degree equations,respectively.
Such procedure may be desirable when a digital computer is not available,
and is described in detail in the next sections. When this approach and
the Jacobi method were both used and compared for checking purposes, the

results agreed to six decimal places in practically all investigated cases.
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Note: Due to (A4-13) from which

AxXe = -Za ,
it follows that
i— = xJ Ax,-¢c = -(yx,a +¢),
and since by (A4-16a)
o= kX,

it finally holds that

. /Exat o
e

A4.3 Canonical Form of Second Order Surfgce

(in Three-Dimensional Space).

As already mentioned following (A4-13), it will be assumed that A is
of full rank, i.e. | A | # 0, in which case none of its eigenvalues can
be 0; in addition, it will be assumed that A # 0, where A is the
determinant of the "augmented A matrix", described in section 2,231,
Thus, of all the real cases, ellipsoid, hyperboloid of one sheet, and hyper-
boloid of two sheets will be dealt with. As the first step leading to a
canonical form of a second degree surface expressed by (A4-6) in three-

dimensional space, i.e., as
xXAx + x'a + ¢ =0, (A4-18)

the eigenvalues of A will be computed and then used in equations of type
(A4-16a) and (A4-17). This leads to solving for the roots of a cubic
equation, procedure used for practical computations which will be described

in detail. For obtaining eigenvalues of A, denoted as N1, Ao, As,
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will be solved, which amounts to solving
2>+ pR 4+ gh +r =0 (A4-182)

where p, g, r are all real. Moreover, _)_\1, 7\2, 7\3, will be all real
since A is a real symmetric matrix. I a;; denotes an ijth entry of

A matrix, the values of p, q, r can be computed according to [6], p. 151,

as follows:
p=-1 :za 823 | | |4 &3} , | q11 3 J\
32 Aas azy aaz Az azn
q= an + ax + am (A4-182)
r= -|A]
Upon substitution
A= ox- —g— , (A4-18b)
(A4-18a) becomes
£ +ax +b = 0, (A4-18c)
with
1
a=7 (Bq- °) (A4-18d)
and
1
b= @2p°-9pq + 271) , (A4-18e)

both real. If the notation
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e = (5F + &F (A4-19)

is introduced, then due to the fact that all three roots are real, c can

be only
c = 0 (A4-19a)

or

c <0. (A4-19b)

The condition (A4-19a) means that at least two roots will be equal and
(A4-19b) that the three real roots will be unequal. With the notations

and 1
3

B =£‘%‘v o ]

the solutions of (A4-18c) are:

x3 = A+ B

Xg = - + ;-3 (A4-20)

Xz = -~ - -3

as presented in [4], p. 93.

Whenever conditon (A4-19a) occurs, then A = B and

X, = 2A
Xg = ‘-A
XB = "A.
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However, due to round-off errors, this condition will not be fulfilled

exactly and so only (A4-19b) will be of practical interest when using digital

computers. First, a constant k will be introduced such that

ko= (37,

Due to (A4-19) and (A4-19b) it holds that

and

A and B thus become:

where

p“‘zl‘ = }ZEI
holds, where
b2
2 . o _
P (2) c k
and thus
p = vk >0
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with the following notation

and

meaning that % was restricted to the

become:

Zy

Zz

and A, B will then be

or

where

&
P (cos——g- - isin—@—)

.k
cos$ = 2p
sin® = —L——‘I—pc >0 ,

P(cos® + isind)

P(cos® - isind)

[7- o

P (oos—?— + ising—

3 3

W+

3

A = e +di
B = e -di
1
®
e=pg cos— > 0
3
% @
d=p’5 sin—m > 0,

both positive due to the restriction on @.
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z, and zp will

(Ad-24a)

(A4-24b)



To compute @ the formula

b -
® = arctg [ /c / =) (A4-25)
will be used. Finally,
A+ B =2e
and
A - B = 2di,

from which
A-B /2. 4/3.

2
Consequently, from (A4-20):
Xy = 2e
x, = —e -d/3 (A4-26)
XS = =€ +d\/é—,

All the expressions needed to compute x;, X, X5 from (A4-26) are

given as follows:

e, d. ... ... in (A4-242), (A4-24b);
o in (A4-23)
L in (A4-25)
< in (A4-21)
le| ... in (A4-22)
ab . ....... in (A4-18d), (A4-18e)

P, 4, r . . such asin (A4-18a’).
Finally, using (A4-18b) the eigenvalues of A are found:

XNo=x-E, i=1, 2, 3 (A4-27)
The eigenvalues for M can then be found using (A4-16a) together with

(A4-27) as being
A=kx, i=1, 2, 3. (A4-28)

Next, eigenvectors of A, which are the same as those of M according
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to (A4-16b), will be found. They will be again denoted by the letter
ty, i=1, 2, 3, and represented by a column vector with three entires.
They will be computed by standard procedures outlined in [7 7, Chapter 9.
Namely, for an eigenvalueii, a corresponding eigenvector subject to the
condition of having unit norm, accomplished by scaling, will be computed

from

(A-IN)t, = O. (A4-29)

This relation represents three equations in three unknowns, the unknowns
being the coordinates of t; vector, which, however, has the rank two
(since |A-TIX,| = 0); thus only two equations of (A4-29) will be used,
one coordinate of t; being chosen arbitrarily. In the present case the
first two equations of (A4-29) will be used and the third coordinate of t,

as yet unscaled, set as t;s = 1, With ayy as the ijth entry of A, D, will be
computed as

a5 - Ay 3y _‘
b

D =
' agy Apz ~ Ay

and the first two coordinates of t as yet unscaled, computed from the

two equations of (A4-29) according to the formulas

t), = A {-az ap _ l
1
D, -ag3 Az~ A,
and
t;e A jan-A -as
Dy azy ~823

The scale factor

will be used to compute
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which are the coordinates of an eigenvector t,, associated with the
eigenvalue 7\1. All three eigenvectors arranged as columns in a (3 x 3)
matrix constitute the orthogonal R matrix presented in (A4-4b).

In canonical coordinates,points at a distance a, in both directions with
respect to the origin on the i coordinate axis, which are the end points of
the ith second order surface axis,will be called a pair of "main surface points, "
In (A4-17) and (A4-16a) it was shown that a, = l/m where A, = k A,.
There are six such main surface points, a pair for each coordinate axis,
which together with the center of the surface, coinciding with the origin
of the canonical coordinate system, and the name of the second order surface
give a good idea about it. Thus, in canonical coordinates, the center of the

surface and the six main surface points have the coordinates respectively:

W e e (o] o] ] [0
0 ; 0‘,£0; al, |-as|; |0 |, 0}
o | 704! to_l 0| ol |asl |-as

In the original coordinate system, the coordinates of these points will be com-

puted according to (A4-8) as
X = Xgt RX',

plugging the above seven coordinate vectors for x~ and taking

1.
X = - At a,

according to (A4-13).
In the forthcoming discussion the kind of second order surface will be
determined, namely whether the investigated case is:
(a) an ellipsoid
(b) a hyperboloid of one sheet
(c) a hyperboloid of two sheets.
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If the values of X, such as computed by (A4-28) are arranged in the

descending order of magnitude, then for all three values being positive the

kind of surface is (a), for Az < 0 it is (b) and for Ay < 0, A3 < 0 it is (¢), pro-
vided all the remaining eigenvalues A are positive, If in the case (a) the letters

a, b, ¢ denote the semi-axes in order of magnitude, all real, then

1//\s

q =
b = 1//%
e=1//)\—1.

When in the case (b) the letters a, b denote the real semi-axes in order of

magnitude and ¢ the imaginary semi-axis, then
a = 1//3\-2
b= 14/%
c = 1//3; .

If finally in the case (c) a denotes the real semi-axis and b, ¢ denote the

imaginary semi-axes in order of magnitude, then

1// %

a frrand
b = 1//fx,
c = ]-/.’_)\.3 .

If the renumbering of a;, A, and corresponding t, is carried out such a way that
for the above semi-axes '"a'" corresponds to the index ;, "b'" to the index o,

"¢'" to the index 5, then also the six main surface points will have a similar
plausible interpretation as the above semi-axes a, b, ¢. This appears to

be convenient and helpful in visualizing the surface and it was included in the

program dealing with second order surfaces.

Note: There are other ways to determine the kind of second order surface.

First, due to the fact that-ii, i=1,2,3 are the eigenvalues of A, it holds that
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‘Al zilxXg X-X-s,

which can also serve as a numerical check. Since inthe present discussion
¢ = 0 (due to the fact that the surface passes through the origin of the
original coordinate system which is actually the 'local coordinate system"
in the main discussion), (A4-14a) holds, namely

1

k= ——— .
Xg A Xq

Under the earlier assumption of non-singular A, none of_):l, Xz, 7\3, is
zero, If all three of_>—\ , are positive, A is a positive definite matrix and
k >0 for each non-zero xo. Thus also M is a positive definite matrix,
since by (A4-123)

M =k A,

If all three of;\1 are negative, A is a negative definite matrix and k <0
for each non-zero x,, Consequently, M is again a positive definite matrix,
This shows that not all three of A, can be negative and thus not all three
axes a, b, ¢ imaginary (this would represent an imaginary ellipsoid and it
would not pass through the origin of the "local coordinate system", which
is real). Thus in the two above cases the surface is (a), a (real) ellipsoid.
Ifii, i=1,2,3 have different signs, so do A, and both A and M are indefinite
matrices. Suppose first that_):1 >0, Xz >0, _):3< 0; then lA \ <g0,
If now

k>0,
then

A-1 >0’ >\2>0s >‘-3<03

which represents (b), a hyperboloid of one sheet;
also
|A |k <o,

On the other hand,if
k<0
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then A\; <0, Xz<0, A3z>0 (before renumbering) which represents (c), a

hyperboloid of two sheets; also,|A |k >0. Next,suppose that
Xl >0, X2<0, XS <0.

Similar results will hold, from which it can be concluded, together with
the preceding part:

if |A|k>0, itis case (a) or (c);

if |A]k <0, it is case (b).
The above criteria have been used in the existing program for second
order surfaces. Further check may be used, considering the determinant
of the "augmented A matrix", denoted as A:

if A <0 it is case (a) or (c);

if A > 0 it is case (b).

A4.4 Canonical Form of Second Order Curve,

This section will be similar to the section A4. 3, but much simpler,
because a plane (two-dimensional space) will now replace the three-dimensional
space considered earlier. Here also A matrix and "augmented A matrix"
are assumed to be non-singular, which is expressed by |A|=J # 0
and A # 0, using notations of (1. 3-3b) and (1.3-3c). Thus,only ellipse
and hyperbola will be delt with. Again, in the first step,leading to a canonical
form of a second degree curve expressed by (A4-6) in two-dimensional space,
i,e.,as

x"Ax + x"a+c¢c = 0, (A4-30)

the eigenvalues of A will be computed and then used in (A4-16a) and (A4-17).
This leads to solving for roots of a quadratic equation similar to the type

(A4-18) in three variables. Now the relation

IXT-4a] =0
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leads to the equation

X% - (an + aza) * |A| =0

where

\A\ = ayiapz ~ aziz,

and where a,, denotes the ijth element of the symmetric A matrix. The two

roots of this equation are obtained as

- Wiz Jaaiazt gy
T a3y * a2 / an+aa‘,2
A= T } < 7o, - Al

and are again both real. Then the eigenvalues for M can be formed using
(A4-164) as
A = k.;\l

>\g = ks:g .

Next, eigenvectors of A, being the same as eigenvectors of M,will be
found; they are denoted as t; and t; each being a column vector with two
entries. For an eigenvector t,, associated with the eigenvalue}:i,the matrix
equation

(A-Ir)t = 0 (A4-31)

will be solved. Here again,one of the coordinates of t; will be chosen
arbitrarily since the two equations of (A4-31) are not independent. The
condition of unit norm for t; will be then used for scaling. Thus the
second coordinate, as yet unscaled, will be chosen as t;; = 1 and the
first equation of (A4-31) will be used to compute t;, namely

. aip

til - - - .
ap — Ay

Then

Sy =v (ti’l)g +1
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will be used to compute

1 /
tyg = — ;1
11 s, 1
and
1
te =)

i

These are the coordinates of an eigenvector t,, which together with the
other eigenvector will constitute the (2 x 2) orthogonal R matrix, presented
in (A4-4b).

Analogous to section 4. 3, the "main curve points'' will be obtained,
from which the curve can be drawn. Thus, in canonical coordinates, the
center of the curve and the four main curve points have the coordinates

respectively:

m [ﬂ [—ﬂ; BJ [_ZJ’ (A4-32)

here again a; = 1//|X;|. In the original coordinate system, the coordinates

of these points will be computed according to (A4. 8) as
X = X5+ Rx',

plugging the vectors of (A4-32) for x' and taking
1 .
X0 = - Ata,
according to (A4-13).
If the values of A, such as computed by (A4-28),are arranged in descending
order of magnitude, the second order curve will be (a) an ellipse if both A,
and A are positive, and (b) a hyperbola if A; >0 and A5 <0. If in the case

{a) the letters a, b denote the semi-major and semi-minor axes respectively,

then
a= 1/,
b= 1//x,.
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If in the case (b) the letters a, b denote the real and imaginary semi-

axes respectively, then

a = 1//)?1,
b= 1//As.

If the renumbering of a,, A, and corresponding t; is carried out so that the
(first) axis "a' corresponds always to the index, and the (second)

axis "b'" to the index 5, then the ellipse or hyperbola can be drawn from the
four main curve points without further investigations; such renumbering was
included in the program dealing with second order curves.

Note: Similar to what was said for the three-dimensional cases, here

\Al le x;-a

and
1

xJd AXo

since ¢ = 0 (due to curve's passing through the origin). Again, if X; and X; are
both positive ornegative, M is a positive definite matrix and A, , Az are both
positive, characterizing an ellipse., Also, \A \ >0. Thus,not both X; and i,
can be negative (andboth semi-axes a, b imaginary). If-)—\l >0 andig <g,

then both A and M are indefinite and consequently A, , Ap have different

signs, characterizing a hyperbola. Also,|A|<0. So it can be concluded:

if |A|>0 the curve is an ellipse, and

if |A | <0 the curve is a hyperbola.
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APPENDIX 5

SOME SPECIAL CASES OF SINGULARITY B)

The singularity of the last three column block in X such as shown in
Table (1.3-1) can be caused by some special relations which were not treated
in section 1,32, Only a few will be demonstrated here as an illustration of
special cases which may result from configurations among the ground
stations not dealt with previously, such as two straight lines. For the sake
of simplicity, the last three columns of X matrix in Table (1.3-1) will be
called here as "a'", 'b', 'e" columns and each ground station's contri-
bution will be limited to one row only, as all the other rows for that

station are the same. These new columns are presented in Table (A5-1).

Table (A5-1)

o~

Representation of Columns a,b,c Associated with A Matrix

a b c
Va(Xe = X3) Va (Ya = ¥3) (x‘;—y‘;i) (X - Xg)
Vs(Xs ~ Xa) Vs(¥Ys - ¥z ) (Xs-ysi‘) (Xs — Xg)
Vi (X4 - Xa) Vi (Y1~ Vs) (xi—yﬁy-‘j) (%, - Xp)

The following simple cases will be illustrated:

1. Column "a'" equal to zero.
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2. Column '"b" equal to zero.

3. Column ''¢" equal to zero.

4. Column 'b" being a (non-zero) multiple of column "a".
As stated in (1.2-8) and assumed throughout, x2 # 0 and ys # 0.

When Column "a'"' contains only zeros, it must hold that
Vi(%3-%X) = 0, i=4,5,...,

which is possible only if some of the "i" stations have y = 0 and all the
rest of the '"i" stations have x = xa. This represents a case with all
the ground stations lying in two straight lines, one passing through the
stations 1 and 2, i.e., coincident with the x - axis (representing y = 0)
and the other passing through the station 3 perpendicular to the first line
(representing x = Xs = const.). Thus, the case 1. represents two
perpendicular lines.

When column '"b'" contains only zeros, the relation
Vi(yi-y3) =0, i=4,5,...,

must hold, which means that a part of the '"i" stations has y = 0 and

the remaining part has y = yas. The first line is again coincident with

the x-axis while the second is parallel to it, passing through the station 3
(representing y = ys = const.). Thus, the case 2. represents two parallel
lines.

When column '"c¢" contains only zeros, it must hold that
X3 .
x: - Yi—-) (Xg-%3) = 0, i=4,35, veey
¥Va

which occurs if a part of the "i'" stations have

— 23
X = ’
yYa

239




representing a straight line through the station 1 (origin) and the station
3, while the remaining part has to satisfy x = x=, representing a
straight line through the station 2, perpendicular to the line connecting
stations 1 and 2 (x - axis). Thus, the case 3. represents two inter-
secting lines, which have the property, that a connecting line between two
of stations 1, 2, 3 (one lying on the first and the other on the second line)
is perpendicular to one of those two lines.

Finally, if column "b" is a multiple of column "a'", the following

relation holds:

Vi(Xi - X3) = Cyy(¥y;—-¥s), 1 =4,5, ...,

where it is assumed that c¢ # 0 (otherwise it would be case 1.). It is also
assumed that for at least one station, say the station 4, ya # 0 and ya #ya
(otherwise it would be again case 1.); the same station has to have x: # xs ,
otherwise the above relation would not hold. Thus the station 4 has a general
location and the above relation is valid for a part of stations having y = 0,
representing a straight line through the stations 1 and 2, while for the other
part, having y # 0, the following holds:

Ya - ¥a x -

X3).
Xs ~ X3

y - ¥z =

It represents a straight line through the stations 3 and 4. Consequently,

case 4. represents two (intersecting) straight lines with no further condition.
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APPENDIX 6

CRITICAL SURFACE IN LOCAL COORDINATES AS OBTAINED NUMERICALLY
BY FITTING SECOND ORDER SURFACE TO NINE POINTS

As in Appendix 4, an equation of the second degree surface may be

that of (A4-6), which is

x'Ax + x'a + ¢ = 0. (A6-1)
In the case c¢ # 0, this equation may be divided by c¢ to obtain

xXAx +xa +1=0, (A6-22)

which contains nine unknowns: six in the symmetric (3 X3) matrix A and
three in the vector . TFor any point on the surface, the equation (A6-2a)
can be written explicitly, with ai:, being the ijth element of A, a; being
the th element of a , and a variable point having the coordinates

x=(xy z), as

Xean +y2a@ + 7284 + 2xXya;, t2xXya; + 2yzass +
+a;x +agy + agz +1 = 0. (A6-2D)
For the general cases such as ellipsoid, hyperboloid of one sheet and
hyperboloid of two sheets, considered at the beginning of Section A4, 3
(i.e., with non-singular A and 'augmented A" matrices expressed there
by |A|#0 and 4# 0y, nine points of the surface, furnishing nine equations
of the type (A6-2b), will be necessary in order to solve for the nine un-

knowns. In the matrix notation, it is thus obtained that

RX +8 = 0, (A6-3)
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from which
X = -R"S (A6-3a)

where, fori=1,2, ..., 9 it holds that

R = LXIB v 217 2X,yy 2%2Z; 2YiBy Xy ¥y ZiJ’

X = [an 225 833 %3 s 825 & 82 831,
S::[lllllllll]T,

Thus, having A and 3 by solving nine equations in nine unknowns in
(A6-3a), the equation of the second degree surface determined by nine
points is known in form (A6-2a). From there the canonical form and all
the necessary information may be computed, using the approach of
Section A4.3, where A, a, and c are substituted for by 1_&, a and 1,
respectively.

Dealing with critical surfaces for range observational mode yields
¢ = 0 in the equation (A6-1), due to the fact that the surface passes
through the origin of the coordinate system of (A6-1), which is the "local
coordinate system' in the main discussion; since any of the ground stations
1, 2, 3 (observing all the satellites) may determine origin of this coordi-
nate system and any of the other two the direction of its x-axis, it may
be assumed that the first entry in A matrix is non-zero.

Dividing (A6-1) in which ¢ = 0 by this element yields an equation

for the second degree surface as
xAx + X3 = 0 (A6-4a)
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with similar description of the elements in A and a as given for (A6-2a).
However, only eight unknowns are now to be determined using eight further
points (the origin having been used). This will lead to solving of eight
equations in eight unknowns (a;; element is now a constant, a,; = 1).
Analogous to the equation (A6-2b), the equation (A6-4a) can be now written

for a variable point as

2 -
X+ Vap+tZam +2Xyap +2X283+ 2y 28 21X +a,y +a3z =0 .

(A6-4D)

Similarly towhatwas said following the equation (A6-2b), it is assumed
again that |A | # 0 and A # 0. Using eight further surface points in

(A6-4b), it can be written in a matrix form similar to (A6-3):
RX + S =0 (A6-5)

where, fori=2,3,..., 9 it holds that

. 2 .
R=LY1 Ziz 2x3yy 2Xy2Z1 2y4Zy Xy Yy Z4 s

- T
X = [axp azs 21, 833 4z 2, 2 az] ,

and

S:[......Xiz......]-r.

With the conventional numbering of points such a way that i = 1 denoted
the station 1 at the origin (of the local coordinate system), i = 2 the station

2 on the x-axis and i = 3 the station 3 in the xy plane, the equations (A6-5)
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will be simplified due to y, =2z = 0 and zz = 0; this gives for the

first equation of (A6-5):
Xodq + ng = 0.

Since x, # 0, it follows that

Plugging this into (A6-5) the following is obtained:

RX + 8§ =0,

from which

X = -R' .
Withi=4,5,..., 9, it is seen that
va 0 2%Xays 0O 0 Va0
% = ,
Y12 2122X1Yi 2%,y 7y 2y, 24 Y Z1
X = [agp %s @ @3 93 42 %]T,
and
5 = [X (X - X3) v X (% - X)) . . ]

This amounts to solving seven equations in seven unknowns, which, in
addition to a,; = 1 and a; = -X,;, determines the matrix A and the

vector a. These can then be used to compute the canonical form of the
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second order surface using the approach of section A4.3, where A, a, and

¢ are substituted for by K, a and 0, respectively.
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APPENDIX 7

APPROXIMATE DISTANCE OF A POINT FROM A GIVEN
SECOND ORDER SURFACE

Dealing with critical loci for the range observational mode brings
about problems connected with second order surfaces. Specifically, if all
points of a network lie exactly on certain second order surfaces, the unique
solution for unknown parameters is impossible and the problem is said to be
singular. Therefore, in order to determine whether singularity or near-singu-
larity could be caused by certain distribution of points (ground stations and
satellites), it will be necessary to determine whether all the points in consider-
ation lie on or near their critical second order surfaces. With some points far
from these loci, the above mentioned singularity does not occur and it is not of
particular interest to know exactly how far these points are from any surface.
On the other hand it is important to detect cases when all the points are exactly
on or very near their critical surfaces. In these cases it is desirable to have a
fairly good idea about the distances of the points from such second order sur-

faces,

A7.1 General Approach

A second order surface can be expressed as
(x - %) Mx - x) = 1, (AT-1)

as seen in Appendix 4, using equations (A4-9) and (A4-10a). When the
surface is given explicitly, the symmetric matrix M, as well as the vector
X, are given; x denotes the coordinate vector of a variable point lying on

the surface. As a function of x, the equation (A7-1) can be written as
f (x) = constant,
for which Vf, the gradient, represents a vector perpendicular to the surface
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at point x, It is computed as
Vf(x) = 3f (x) / 3x = 2M (X - Xo).

With n denoting the unit vector perpendicular to the surface (A7-1) at the
point represented by x, which will be hereafter called point x, it follows:

n=M(x-x0)/s (AT-23)

where

s=| M- x0)|. (AT-2D)
The following relation between x and x; holds (with n properly oriented):
X = x+dn (AT-3)

where x; represents a known point, while x represents a point on the
surface, which is as yet unknown; d, also unknown, is then the desired
distance, connecting x and x;, perpendicular to the surface. If is seen that
(AT7-3) represents three equations in four unknowns, namely the three
coordinates of x and the distance d. The fourth equation is then represented
by (A7-1). Using (A7-2a) and (A7-2b), the system of four equations in

four unknowns may be now written as
X = X+ M(Ax - %)/ | M (x - xo) | (AT-43)
together with
(X - %) M(x - %) = 1. (AT-4D)

The three equations (A7-4a) are of second order in the unknowns
d and x, since in this approach n was also a function of the unknown vector
x. Thus, a simple substitution for x from (A7-4a) into (A7-4b) is not
possible and a different approach would have to take place in order to
solve the system of (A7-4a) and (A7-4b), quadratic in the unknowns. One
such approach will be described in the following section, taking advantage
of the specification that the distances are not needed to a great accuracy,

namely for points far from the second order surface, for which the
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distances are desired only approximately or not at all,

A7.2 Specific Approach

The starting equation in this approach will be similar to (A7-1),

namely
(X - %) M (x - X0) =k, (A7-5)

representing a family of the second order surfaces, which are said to be
similar. The surface described by (A7-1) is one of these surfaces, when
k= 1, Tt will be called the critical surface.

As in the previous section, the distance d will pertain to a known
point represented by x;, or point x; . However, a new concept permit-
ting great simplifications will be introduced: the distance d will be measured
perpendicular to that surface of the family (A7-5), which passes through the
point x;. Thus the distance will be measured perpendicularly to the
critical surface only when the two surfaces are infinitesimally close and there-
fore only in these cases will the distance be exact. With the point x;
moving further from the critical surface the separation between the two
surfaces will be greater and the angular difference between the normals
to both surfaces will also grow, depending further on the location of x;;
thus the computed distance will be decreasing in precision and could
eventually become completely false, or the real solution may not exist at
all. However, even in these cases the purpose of this approach would be
fulfilled, namely, the results would indicate that the point x; is not on or very
close to the critical surface, which is the desired information. On the
other hand,when x; is on or very near the critical surface, not only would
this be detected, but also a fairly precise nominal value of the distance in
guestion from the surface would be obtained. This was also supported by
the computer runs with generated points x,. For the above reasons the
present method seems to be suitable for detecting of singularity or near-

singularity connected with the second order surfaces and it gives a good idea
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which points and to what extent (depending on their closeness to the
surface) could be responsible for it.

For the surface passing through x;, which does not lie on the
critical surface it holds that k # 1; it will be called "k-surface'. The

constant k for this particular surface will be computed as
k = (x5 - %) M(x; - Xo), (AT-6)

since it is a surface from the family of (A7-5) and x, lies on this surface.
M and x, are again considered to be known as in section A7.2; this makes
the determination of k possible, For the unit normal to the k-surface the
same approach and the same formulas as (A7-2a) and (A7-2b) are used,
except that x; will replace x, since that is the point at which the unit normal
is desired (the difference between the critical surface and the k-surface
rests in the right hand-side of (A7-5), the constant, which does not alter

the formula for the gradient). Denoting it again as n, it holds that
n=M(x, - X)/8 (A7-72)
where
s =| M@ - %) | . (AT-Th)

The difference between this and the previous section is that n is now a

known vector. Similar to (A7-3) or (A7-4a) it holds that
X =x+dn

where x is again an unknown point on the critical surface and d the desired
distance, n being properly oriented (having now the opposite sense with
respect to (A7-3)). The main simplification consists now is expressing x
as

X=%x -dn (AT-82)
and substituting it into (A7-4b), i.e., in

(% - x0)" M(x - x0) = 1, (A7-8b)
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which holds for point x lying on the critical surface. With this substitution

(AT-8b) will give:
(x1 - X)) M (%1 - Xo) - 2dn"M (x; - Xo) + d°n"Mn =1, (A7-8c)

which is a quadratic equation in one unknown, d. The first term on the

left side is equal to k, according to (A7-6). Thus (AT7-8c) yields

dE+2pd+q =0
where

— T T

p = -n"M (x; - Xo)/n'Mn (AT-93a)

and

q = (k - 1)/n" Mn, (A7-9Db)
The two solutions for d are given by

d,.= -p =/p°-4q, (A7-9¢)

indicating, that in general two intersections of the line passing through
point x; perpendicular to the k-surface with the critical surface will
exist, If the signs of d; and d, are different, the intersections will take
place on different sides of the line with respect to x;. The absolute value
of d will indicate the distance (in chosen units) between the points x; and
%, whose relation to the distance of x; from the critical surface has been
discussed. The shortest of the two computed distances will be associated
with the closest intersection, which represents the desired information.
No real solution for d will indicate that the above line does not intersect
the critical surface, thus in general indicating that the two surfaces are
"far apart" with no further specification, which, however, is in itself also
valuable information,

With d;, and d; known, some numerical checks may be performed
and additional information pertaining to the critical surface extracted; namely,

the positions of two additional points on the critical surface for each point x;
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can be obtained. Position of the two additional points on the critical surface
is computed by substituting both values of d into (A7-8a). As a numerical
check,the equation (A7-8b) must hold for each of such additional points.
Furthermore, it is possible to compute the unit normal to the critical
surface, denoted as v, at any such additional point x (which is now known)

by (A7-2a) and (A7-2b), as
V= Mx- x0)/ | Mx - x| (A7-10)

With ¢denoting the angle between n and v in the interval < 0, ¢ >, it holds

that
© = arc tg (sin ©/cos ©) (A7T-112)
where
sino=./1-coso (AT-11b)
and

coso =1 v. (A7-11c)

With ¢ approaching zero the computed distance will approach the distance of
point x; from the critical surface (measured perpendicularly to the critical

surface).

A7.3 Practical Computations with Critical

Surface in Canonical Form

Substantial simplifications in computations are made when the
family of second order surfaces (A7-5) is given in canonical form. This
procedure will be used in practice, after a particular second order surface
has been obtained in its canonical form according to section A4.3; x =
x1,¥1,2.)7 is assumed to have been transformed from the original local
coordinate system to the canonical coordinate system using (A4-8a).
Accordingly,

M = diag. (Ai,AzA4),
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(A7-5) reads then as
A F YA + ZPA; = k (A7-12)

with

x=[xyzl.
For computation of k, (A7-6) now yields
k = xFA + yrhe + 2 Aas (A7-13)

n, according to {A7-Ta) and (A7-T7h), is given as

1
n=1[xX yilz zrs] = " (A7-143)
where
=./8;+ $,+8, (A7-14b)
with
S1=x°A\", Sz=y AL, and s5=z° A5 ; (A7-14c)
this can be also seen directly from (A7-12),
Due to
T 2 2 2 1
n'M = (A7 nids zaAs ] = S
it follows that
n' M(x;, - X0) = nTMx, =8 (AT-152)
and
n"Mn = (A1S1 + A2Sz + AaSa)/s%. (AT-15b)

For the sake of clearness the two solutions for d will be denoted as
d, and dy, rather than d; and d;. The two additional points on the critical
surface will be denoted as x, = [%, V. 2. 1" and x, = [x, ¥y 2, 17, associated
with d, and d, respectively.

Thus, according to (A7-9a) through (A7-9c) together with (A7-154a)
and (A7-15b), it is obtained:
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p=-5/(XAs tAzSe + AsS;3),
q = 8%k -1)/(Msy + Azsz + Xg8y),

d

]

-p +/p*-q,

a

and

I

dy = -p - /p*-q.

In these expressions, k was given by (A7-13), 's by (A7-14b), and
S1,85 and ss by (A7-14c). Thus d, and d,, representing the main outcome
of these computations, have been obtained.

Next, the two additional points on the critical surface will be

computed, according to (A7-8a), as

X, = Xy - d.n
and

Xb = X]_ - dbn;

this, together with (A7-14a) yields

[ %, [xy (1 + Xy d,/8)
Ya = yi (1 +Xzd./8)
Zo | | 21 (1 +X3d,/5)
and
-Xb_ _‘Xl (1 +Aldb/S)—
Ve = V1 (1 +Xzdy/s)
Zy, z; (1 + X53d,/3) |

For any such points lying on the critical surface the equation (A7-8b), here as
XEA tySAg t Zihs = 1,

serving as a numerical check of computations,must hold; here x,, V., Za,
Xvs Yv» Zyp, OY the coordinates of any other point lying on the critical
surface can be substituted for x,, y,, z,. If the points x, and x, are of

further interest, they can be transformed back to the original (local)
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coordinate system, according to (A4-8).
Finally, the unit normals to the critical surface at x,, x,, or any
other point lying on it, can be computed according to (A7-10), with the

coordinates of any of these points substituted for x,, y;, z,:

1
vy = (XA iz 241As] S
s

where

- 2N 2. B~2. 22
Sy “‘/Xi ALY Azt ZAg

For computation of the angles between the unit normal to the k-surface
at x; and the unit normal to the critical surface at any point, namely at

¥, and Xy, may be computed according to (A7-11a) through (A7-11c):

cos @y = n' v,

sing, = m
and

©,; = arc tg (sine, / cos ¢,),
which gives

¢, in the interval < 0, 7 >.
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APPENDIX 3
CRITICAL SURFACE FOR FOUR GROUND STATIONS

A8.1 Critical Surface for Four Ground Stations in Local

Coordinates Using Taylor Expansion of Determinant, as

Function of Ground Station Number Four,

When only four ground stations observe ranges to satellite points, the A
matrix of Table (1.2-1) will contain only o first rows, corresponding to "for
station 4" of that table and six non-zero columns corresponding to these o rows.

2%z a g SFe

Thus, these columns will have heading dx,, 3y, 024, ,
Ya Y3 X2

respectively. As in section 1.2, the adjustment problem wil be singular if
rank A < 6. (A8-1)

From (o x6) Kmatrix, (6 x6) matrices A can be formed using all combinations of

six rows in A, If (A8-1) holds, then
|a] =0 (A8-2)

will be true for all matrices A. Conversely, it (A8-2) holds for any A, then
also (A8-1) holds. Consequently, (A8-1) and (A8-2) for all matrices A are
equivalent statements. In the forthcoming investigation only one A matrix will
be considered, its rows corresponding to satellite points 1, 2, ..., 6. Then

the same conclusions will be drawn for all possible combinations of six satellites.

Forj=1, 2, ..., 6, Amatrix can be read from Table (1.2-1) as
A= [;a bs Ca dJ é’a ffaj (A8-3)
where T
ay = Zy(Xy - Xq), (A8-3a)
by = Z, (Yy - ya), (A8-3b)
Cy = Zy(Zy - z4), (A8-3c)
dy = (2.Yy - ¥aZy) (Xy - Xa), (A8-3d)
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e = (2aYy - ¥aZy) (Yy - ¥a), (A8-3e)

X,
£= (2% - V5 22) - 2y (% - w0 ] (%) - %) (A8-31)
Ya Ya
1t will be assumed throughout that

zy # 0, (A8-4)

since for z, = 0 the four ground stations would lie in a plane. Configurations
with all stations in a plane were investigated in section 1.,3. From what was

stated there it holds for four ground stations that
|A| = 0 whenever z, = 0. (A8-5)

As seen from (A8-3) - (A8-3f), IAI can be expressed as a function of
%4, Ya. Zg coordinates; the relation (A8-2) can be thus viewed as an equation of
a surface in X4, ya, Z4, the order of which will be now examined. Using Laplace ex-
pansion for the last (or first) three columns, | A| isgiven as a sum of signed products
of {(3%3) minors and their (3 x 3) algebraic complements in all combinations, such
as described in [6 ], p. 33. One such product will be sufficient in determining
the order of the surface represented by |A| = 0. Let it be denoted by E = PT

where

a; by ¢ d, e, £
P =la by c and T = |d, e; f;

a, by cy d, e, f;

Considering (A8-3a) - (A8-3c), it is seen that Z,, Z,, Z, can be factored out
of the first determinant and P can be written as
Xy = %g) (Y -~ Vo) (Zy - 24) J
P=12,2yZ¢ |(Xy -%X) (Y -¥d) (Zy - 24)] ;

Xy = Xg) (Y- Ya) (Zx - Z4)

upon subtracting the first row in this determinant from the second and third
rows, the only row which will still contain any of x,, y., z, will be the first
row and thus P will be of order at most one in X,, y,, Z,. No such simpli~-

fications are possible for T, each row of the corresponding determinant being
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of order exactly one in x4, V4, Z4; consequently, T is of order exactly three
in X4, ¥4 Zg. It can be then concluded that |A| is of order at most four and at
least three in x4, V4, Z4, Which means that (A8-2) represents a fourth order
surface in x4, v4, Z4. Furthermore, this surface passes through satellite
points 1, 2, ... 6 associated with A, and ground stations 1, 2, 3. This is

easy to see, since whenever X,, Y;, Z; are plugged for x,, y4, Z;, then

as seen from (A8-3a) - (A8-3f), and when any ground station's coordinates are
plugged for x,, v,, z,, then |A| = 0 holds as well; this is due to the fact that
74 becomes zero by this substitution and then (A8-5) is applied.

Next, an explicit form of 1A\ will be obtained by expanding it in Taylor
series as a function of z,, at the point z, = 0. Since \A} represents a poly-

nomial in z, of order at most four, this expansion will have the form:

_ [ala 1 a4l o 1 [a%a[] e
A1 = 1A=+ dz1 YR NP ot T3 | dz C e T
— z 470 L Jzg =0 L. —lz, =0
1 {a4al .
+ = , -
" dZiJ « 2k, (A8-6)
— 2, =0

The derivative of a determinant with respect to z, will be taken as a sum of
six determinants (when dealing with (6 x 6) matrices), by replacing in all
possible ways the elements of one column of this determinant by their deriva-

tives with respect to z,, according to [6 ], p. 34. As stated in (A8-5),

|Alz,= = 0. (A8-T)

da ’
With the notations a;’ = ay etc., it is obtained from (A8-3a) - (A8-3f):

4
a, = b, =0,
cy = -2y,
dy” = Y, (X, - xa),




®
|
o
s
i
<
w
~

and

. X3

Vs
Thus
%ij—]-=a+b+c+d (A8-8)
and
F-Lfﬂ S TeB+T T
dz,
L 24 F0

where _

a = [aJZ4=O!

b =[bl=0

c="lcl,=0
and

d=1ldl, -
with

a=la by cfdy e £y,

b= [a bycydye fy|,

c = fa by cdyetyl,

d=|a byc dy e £ |.

(The dots inside the determinants have been omitted.) Upon plugging z, = 0
for a,, by, ¢y, dy, ey, fj, it follows that
= X
a = IZJ(XJ -Xs), Z3(Yy~Vs), -Zy, ~VaZy(Xy - Xa), -Yaly(Yy - ¥3), “ZJ(X4'Y4';§)(XJ - Xg) ‘?
when Z, in each row (j =1, 2, ..., 6) is factored out together with

~y§ (Xe=Va —;—3) from columns 4, 5, and 6, then the above expression becomes
3

- X.
a = -ZyZs.. .72 y.f (Xq‘YAL';i) ’XJ'XA.-, Yy -V, -1, Xy =X, Y,-ys, X;-Xp l = 0,
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since there are several ways in which to bring other columns besides the
third column to be constant (for instance, subtracting column one from column
four leaves each element of column four to be (x,-X35); multiplying column
three by (X, - Xz) and adding it to column four brings each element of column
four to zero, from which the asserted relation follows). Similarly, upon
factoring out Z, for each row and y,(X4-ya i) for columns five and six, it

is obtained that

~ < ¥
b = leg...ZGY4(X4"Y4_§:) \XJ“X4, Yj"y4, Zj, ——ZJJ(XJ_XS)’ Yj - Va, Xj - Xg l = @3

since subtracting column two form column five and subtracting column one from
column six brings columns five and six to be constant columns. Tt alsc follows

that

Y
= (Yy-ya), Xy - %z l = 0,

- X
c = ZJZQ...Zgy4(x4—y4—§‘:)1XJ—x4, Y, - Va4, Zy, Xy - Xg, z
!

upon performing similar equivalence operations for columns one and four and

one and six. Finally,

T - X, Y, x 3
d = lee.--Zsﬁ ‘XJ‘X@ Y=Y Zy, Xy ~Xz, Yy~ Vg, (-Z—’ - Ej ‘};a)(XJ Xz = 0,
] 3

upon using columns one and four and two and five for equivalence operations.

Thus Ta- =p = c=d= 0, which yields

dlal -
rdlal = 0. (A8-9)

~dz, 1., -
4 Z, =0

Due to
a, = by =0 (A8-10a)
and
cy =d) =e/ =1 =0, (A8-10b)
it is obtained that
da
—(E = a + gp t+ aj (AB-11ga)
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where

4 4

a = |ay by ey dyeyfy|
a, = |ay by ¢ dy e/t |
a; = |a, by cf dy es £
Further,
%EZ = by + by + by (A8-11b)
where
by = lagbycyde | = a,
by = |ay by c; df e fy [,
and
by = |a; by ¢y df ey £ ;
also,
_%;_3; = + oy + Cq (A8-11c)
where
e, = |ay by cydy ey £i] = 2
cz = |ay by ey dyeyfy| =y
ez = |a by ey dy ey £
finally,
—%2—4 =d + dy + dg (A8-11d)
where
d; = |a; byc/dye f]]| = ag
de = [ay by ¢ dj ey | = ba,
and
ds = |a; by c; dy e £| = ca.
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From (A8-11a) - (A8-11d) together with (A8-8), it follows that
&AL )
7 = 2(a * apt azg T by + by ca) (A8-12)
dzg
thus

2 - — — —_ — —_— —_
L reia =4 +ag+ ag+ byt byt cy (A8-122)

21  dz? dzy=o
where the bar will indicate from now on that such a value was obtained by plug-
ging z, = 0 in its unbarred counterpart. Proceeding the same way which led to

the obtaining of a, b, ¢, d, it is now found that

- X Y
8 = ZiZz...25Y4(X4~Ya _y-j) lXJ -Xas Yy~ Ya, -1, ‘2_1 (Xy-X3), Yy-ya, X, "Xe\ =0,
3

- X Y
a = lee--'ze.y4(x4'Y4§: )\XJ“X«y Yy - V4, -1, X, - Xg, _ZJ (Y5 - ya), Xy "XER = 0,
3
S = 2 b:S) Ya__a _
a3 = Z1Zp .. ZoYa | Xy = %q, Yy~ Va, -1, Xy -Xg, Y- ¥a, (EJ - )(XJ xz) | =0,
b
- X Y Y
by = -Z,Z... -ZS(X4‘Y4_§:) \XJ_X-';.-! Y, -Ya Zj, EJ (XJ-XS),'-ZJ (Yy-ya), (Xy-%5) 1 =
J

3

_ X Y Y
= 71Z,. .. Zs(x4‘Y4';:) (Xa—Xp) ‘ 1, Y, -y4, Zy, —Z-j (X, ‘Xs)aE'1 (Y -ya), (X "XEM s
b
{AB-132)

Y Y
bs = =Z1Zz. .. Zs¥s | Xy =Xy, Yy -V, Zy, EJ (X, -%a), Yy~ Ya (——-’ ——JZ ——ay ) (X, ~%z) | =
J J JJa

Y
= Z1%Zz. .. ZeYa(Ya - V3)| Xy=%g, 1, Zy, Ej Xy -%3,Y; - ¥a, (_j - “j—a)(Xj -x2) |,

(A8-13b)
and
Co = ~ZaZs . Zoye | Xy ~%e, Yy - Var Zy, X, —xs,lzfj(yj—ys), (_}Z(j Zj_a) (X, -%2) | =
= Z,Z... ZeY4(X4“X3)l 1, Y;-Var Zy, Xy —Xa, }Z“{J Yy -ya), (}E{j - 'SZ_{J_X'&) (Xy - %) [
J 3 3 Y3
(A8-13c)
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Thus, the using of (A8-12a) yields:

1 r = il — —_— —
- ‘Q—Lgéi = by + by * Ca. (A8-14)
2! I\._dZ4 "}Z4=O

Due to (A8-10a) and (A8-10b), it follows that

-g—it = a; t a5y (A8-14a)
- where
an = |ay by ¢ df e f |
and
amp = |3y by oy df e £
d
—d% = a5 + 2z (A8-14b)
4
where
a1 = | by e/ df e fy|=an
and
Agp T \ 3,3 bJ C; dj e; f{\;
d
"&i = az; t agp (A8-14c)
where
s = |2y bycydfe £ | = ap
and
g2 < Baj by C; dy e; fj'\ = 3pg;
db
——ad% = by * beg (A8-144)
where
by = lay, bycidielf| =an
and
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bzz = |a by cy d; e £/

db
Ti;: = bay + baz
where
bay = |a, by cf dy ey £ | = a
and
baz = |3 by ¢y d) ef £ | = bga;
finally,
de
a‘a = Ca1 T Caz
4
where
ca1 = |3y byc/dy e f|= 2>
and
caz = |ay by ¢y df ef £ | = bas.

From (A8-143) - (A8-14f) together with (A8-12), it follows that
d®|A

3~ = 2+3(an * ap t 8z t baa);
dz,

thus

1 rdlal P

' =g + a., * + .
31 dzf dag=o 11 12 oo bz2

Now, proceeding as in the previous parts, it is seen that

{A8~14e)

(A8-14f)

(A8-15)

(A8-152)

- X Y Y . |
a = -Z1Z5. .. Zs(x4-y4§f) | Xy -%e, Yy-ya, -1, 27 (X - %a), 2 (Vy=ya), X-x2 | =0,
3

ZJ J

and

h. Y Y X, Y, x
b :ZZ...Z X_X4,Y _Y,Z’—-J(x "X),_‘j(Y _y), (.—.j_._J,__a
22 142 6\ J J 4 J ZJ 3 3 ZJ 3 3 Zj ZJ Va
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Thus, from (A8-15a):

3 - —
_.:_[.. F_@_Lé_\. = by, (A8-16)

31.dzd =0
From (A8-15), dueto (A8-10a) and (A8-10b), it holds that

%:Q&a:%&zd_baaz

dz, dz, dz, dz, | 2y by CJ' dJ’ eJ’ fy 1 = a1,
so that
d;z;‘LA = 2030 day;
thus
i (A8-17)
wherse

- Y Y X, Y, x
2 = Z1Zs .. Zg | Xy -Xq, Yy -¥a, -1, 57 (X - %a), 'ij (Yy-ya) ("Z'j“ =1 =2y (X, - xz) |

Zj ZJ ¥Ya
(A8-174a)

Finally, using (A8-T), (A8-9), (A8-13), (A8-16), and (A8-17), \A\ is obtained

from (A8-6) as follows:

lal = (gz + I3-3 + gs)zz{g + -1;22243 + ;111Z44,

or

|A] = 2%(a; + 8524 + 8,2, (A8-18)
where

8z = by + by + Cp (A8-182)
8 = baa, (A8-18b)

and
8, = A, (A8-18¢)

and where by, bs, C3, bss, and a;;; are given
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in (A8-13a), (A8-13b), (A8-13c), (A8-16a), and (A8-17a) respectively.
From any of these relations it is clear that
Z; # 0 (A8-19)
should hold, saying that no satellite point can be in plane with the stations 1,
2, 3, should this method be applicable.
The condition |A| = 0 represents a fourth order surface in x,, Vs, Zs, as
it was stated earlier, since |A| was shown to be of order four in x,, Vi, Zs.

Due to (A8-18) one can also write this condition as
|A] = 2° G(xe, Ya» 74) = 0 (A8-20)

where

G(Xa) Ya» Za) = 8z + 832 + 84 Z,° (A8-203)

and G is of order at most two in the variables x,, V4, Z,; it means that s, is

of order at most two, a, at most one, and a, a constant with respect to these
variables (this will also be verified later). Since z, # 0, the expression (A8-20)
implies that

G(Xgs Yar 29 =0, (A8~21)

which represents a second order surface in x4, ya, z4. It will be proved now
that this surface passes through the six satellite points, 1, 2, ..., 6 and
through the three ground stations, 1, 2, 3, (since a second order surface is
determined by nine points in general, the above points could be used to deter-
mine the surface defined by (A8-21) in the way presented in Appendix 6). It is
easy to show that the second order surface (A8-21) passes through the six
satellite points associated with matrix A. In (A8-5a) it was shown that [A| = 0
whenever any X,, Y,, Z, were plugged for x,, V4, Z,. But this means, accord-
ing to (A8-20), that

Z7 G (X, Yy, Zy) = 0,

and since Z, # 0 as stated in (A8-19), this yields

G(Xy, Yy, Zy) = 0,
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which proves the asserted statement. A different approach will have to be
taken to show that this surface also passes through the stations 1, 2, 3. It
also held that | A| = 0 whenever any of the three ground station's coordinates
were plugged for X, V4, Z4, but this was true, as it can be seen from (A8-20),
because z, was replaced by zero, while nothing can be said about the second

order surface G = 0 so far. From the equation (A8-20a) it is now seen that
Gy ¥y 2) =0, 1=1,2, 3, (A8-22)

whenever a; = 0. It will be shown that a; = 0 holds if any of these x,, y; replace
Xy, Ve (Z4 does not appear in any of (A8-13a), (A8-13b), (A8-13c) which form ay).
From (A8-13a) one can see that

b2=0

whenever x;y =0 andy; =0, or xo # 0 and yo = 0, or X3 and y; # 0, replace x,
and y,. Similar considerations yield
53 =0

using (A8-13b) and

0320

using (A8-13c). Thus the asserted relation for the three ground stations fol-

lows and the second order surface G = 0 passes through the six satellite points
and three ground stations. The considerations and derivations in this section

have been based on a similar presentation in [1 ], Annex A, or in [10 .

A8.2 Explicit Expression for Second Order Surface G(X,, V4, Z2) = 0.

In order to find a,, a5, a,, necessary for computation of G(x4, Vs, Z:) from
(A8-20a), suitable expressions have to be found for Ez, 1_0-3, Es, 522, and ;m,
as seen from (A8-18a) - (A8-18c). If in the determinant on the right side of
equation (A8-13a) the first row is subtracted from all the other rows and the
determinant developed by the first column, a new determinant of (5 x 5) matrix

is obtained and gz can be given as

— X Y Y
e =71Zz .. Zem-y@;j)(xfxz)\n Yy, Zy - Zy, Ej (X, 'Xs)"z'i X1 - %a),
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Y Y
7 (Vs=ya -5 (a-va)h X=X |, (A8-23)

which is an expression of degree one and two in x4, y,. In this and the following
determinants of (5 x 5) matrices, it is assumed that j=2, 3, ..., 6. If the
same procedure as above is carried out in (A8-13b) with the exception that the

determinant is developed by the second column, it is obtained:

Y Y.
b= -Z1Z3. .. Zey4(y4—y3)1 Xy =Xy, Zy -7, EJ (Xy -x3) - 'Z'l (X1 -x3), Yy-Yy,
3 1

X _ XX Y1 X%

(7,77, ) o =xa) - (Z Z) vs ) (X, -%2) |, (A8-24)

which is of degree one and two in y,. Similarly, for (A8-13c) it follows (deter-

minant developed by the first column):

- Y Y
= Z1Zz. . . ZgYa(Xa~ Xa) le =Yy, Zy-7Zy, Xy - Xy, EJ (Y,-ys)- 'Z‘i (Y1 -ya),
b

X Ya_a X _Yix -
7. 7. g X = (- 0w [ (48-25)

which is of degree one and two in x,, y,. Thus, considering (A8-18a) a, is found
to be of degree one and two in x,, y,. Next, in the determinant of (A8-16a), the

first row will be subtracted from all the other rows, giving thus

bee ZIZB Zte X

Xy YiXs

Y Y
Xy=Xgy Y1-Ya, Zi, =Xy -%g), =Y, -y -
: Vs . Zl( 1 3) Zl(- 1-Ya), (Zl 71y )(Xl Xz)

Zy Zyys

.

Y Y
X=Xy, Y=Yy, ZomZ =3 (X ) =21 (X ey L Y, x
.5: 1s 45 . 1 i 1 ZJ(X” XS) -Z]_(Xl Xg), Z;(Yj -YS)— (Yl yS) (-- =l J)(Xj ~Xg) ~

(—I—E Vs ){Xl -Xz)
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which is of order at most one in x,, y., and thus a; is of order at most one in
X4, Vo (85 = Egg by (A8-18b)). Later the determinant of (6 x 6) matrix in
(A8-26) will be developed by the first row, giving thus six determinants of

{5 x 5) matrices with patterns similar to those in the previously mentioned
determinants, Finally, considering (A8-17a) with the first row of the
determinant subtracted from the other rows and the determinant developed by

the third column, it follows that

Y Y Y Y
a1 = -2y Za. .. Zg \ X=Xy, Yy-Yy, EJ(XJ ~Xa)- El(xl'xs),'ij (Yy-ya)- El(Yl‘Y:s),
J 1 3 1

X, Y,x X, Yix
== Xy-xz)- (S -5 X -x A8-27
(7, 7,y %) = (5 =7 A (Kaxa)| (A8-27)

where ;111 and thus a4 (a4 = ;111 by (A8-18c)) is a constant with respect to x,, V.,
z4. From (A8-20a) and the above results it is now verified that G(xs, ya, 2,) is
of order one and two and therefore (A8-21) does indeed represent a second

order surface, As a matter of fact, since
G(Xsr Var Za) = (b2 + bg + Cg) + boozy + amzs (A8-28)

(following from (A8~20a) and (A8-18a) - (A8-18c)), one can readily find that

— 2 2 2
G(Xgr Yas Zg) = C1Xg+ CoXaVa + CaXoZg + Ca¥a + CsYaZg T CgZ4 + CoXq T CaVq * Coly.

Thisform contains all the terms of a second degree equation with exception of the
constant term ( this indicates that the second order surface G = 0 passes
through the origin, i.e.,ground station 1, which is clearly true since it was
shown to pass through all the six satellite points and three ground stations).

For practical computations the expressions for gg, ga, ES, 522 and ;111 can
be simplified by using several determinants of (5 x 5) matrices which can be
easily obtained one from another. For all these determinants,j=2, 3, ..., 6

will be used. First, a determinant of (5 x 5) matrix, called D, ,will be defined as
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Y Y; Y Y, x
D = | X,-Xy, YY1, 5 (Xy-%a)- 7 (K1-Xa), —J(YJ"YS)" (Y1 Va)s ( ~128y (%, x )-
Zy Zy Zy Zy ZyYs 2

X _YiXg

(777 &) |

Next, six determinants will be defined as follows:
D, ... replace the first column of D by (Z, - Z,) and change the sign.
Dz ... replace the second column of D by (Z; - Z,) and change the sign.
Dz... Dy =D.
D, ... replace the third column of D by (Z, - Z,) and change the sign.
Ds ... replace the fourth column of D by (Z, - Z,) and change the sign,
D; ... replace the fifth column of D by (Z, - Z,) and change the sign.
Further, introduce the notation

K=17,25... 7%

Now it follows from (A8-23), that

be = K(xs- y4 )(&-XQ)(—DG) = -KDy(xs - XJ4—X2X4+X2y Ya)» (A8-29)
from (A8-24), that

= D D

bs = Kye(ya-ya)(-De) = -KDs(p" =5y 2 Bsf’yav4), (A8-30)
and from (A8-25), that

- D D

Cs = Kya(Xa=Xg)(-Dy) = "KDS(B4X4Y4_-15:X35’4)- (A8-31)

(=}

In order to find by, from (A8-26), the determinant present there will be developed

by the first row as follows:

- Y
bze = K[(X;-Xg)Dy + (Y1-y4) Dp + Z,Ds+ Ei(Xl"Xs)D4+

Y
7 hyaDst (7 - 7 B xan
1 1

or
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= e ™D De D D Dy
bz 2 KDg _D. Xa Ds Ya D, X1 Ds Y, Ds 1
D, Y Ds Y Xy Y, x
==l ok -== =k (Y, - -(-—1~-—l—3>x—x ] A8-31
D, Zl( 1~ Xa) D, Z, (Y1-Yy3) 7. 7, v (X1 - %) ( )
Finally, from (A8-27) it is seen that
;111 = -KD3 = =KDy (%j)' (A8~32)

Having all the terms necessary to obtain G(x,, V., Z4) from (A8-28), it follows

that _

X. X, D
Ger Var 7a) = KD X2 -2 %y, - xg%, + o2 y, + 22 y 2 -
“ Ya Ya Dy

=5 + =4 =% + =1 + ._.gl: &.
XaYa-— X X4z VaZ XiZa -
Dg YaVa De 4 :Da Vs DS + De e DG 154

D D D.Y Ds Y.
- R Y2, -2 77, - S (X - %) 2 - T2 S (Y - Va) 24 -

Ds D, ** D, 7, D; Z,

X% X) De g ]
- - Xy ~Xo)Z,t+ Z
(Zl 7, Vs Xy -X2)2Z4 Ds 4,

For the second degree surface as given by (A8-21), i.e.

G(X4’ Ya, Zée) = Oa

the above equation can be divided by (-KD,), since K# 0 (Z,# 0 for all j) and
Dg # 0 in general. Consequently, this second order surface can be expressed

after rearranging the terms as

D
xg (2"" -§3>x4y4 +Dxs +D5y2 Dy 1 Das2
Ds Dg Dg Ds

Ds ys

Xa D D D Dy, ,D D, Y
+<X_3__J Dy —[—lX+ v. +=ay ¢DPa Xy o oy
Bys Deys D6 3 Y4 D6 1 D6 1 DG 1 DG Zl( 1 3)
DY X Y; x
+ 288y oy + (—1 -——l-fi) X, - % ]z = 0. A8-33
Dezl( 1-Ya) 7. 71 Va Xy - X2) 4 ( )

From this last equation the second order surface will be expressed in a matrix

form; writing X =x,, ¥ =V4, 2z =24, it follows that
x"TAx +x'a+c¢c =0 (A8-34)

where A is a (3 x 3) symmetric matrix (not to be confused with A matrix of
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(A8-2)) with a,, as the element in its ith row and jth column, a is a (column)

vector written as

(2 223507,
and c is a constant term; the variable (column) vector x is written as
x = [xyz]l.

From the relation (A8-33) A-matrix and a-vector are found to be such that

3,11:1,
1 /D, x
= e (& _ 23
A2 = 821 75 <D6 y3>,
1
D
et =}
322 Ds,
1
3.23‘:332:'2_ gj:
D
- =3
3‘33 De’
and
& T —Xg
X Ds D,
82 =Xz 2 - T2yg-2x

ya Ds Dg a5

___g-X +.I_)?. +_.3 +P_4_.l +.I.).__LY +
as [Ds 1 De Y, DGZ D. Z (Xl Xa) D, Z (Y1 -y3)

X Yx> :l
21 =123 X, -
+<Zl Zlys(lxz) ’

Furthermore, here
¢ = 0.

When A-matrix and a-vector of the second order surface given by (A8-34) were
computed numerically, they were the same (within round-off errors) as the
ones computed from fitting of a second order surface to the nine points lying

on it (six satellites points and three grounds stations), according to the
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description given in Appendix 6.

In conclusion it is emphasized that the problem with six satellite points
will be singular if ground station 4 lies on a second order surface which
passes through all six satellite points and the three remaining ground stations.
If more than six satellite points are observed by the four ground stations, the
same approach could take place using all possible combinations of six satellite
points, The problem would then be singular if (A8-2) held for each such
combination, This means that station 4 would have to lie simultaneously on
all second order surfaces defined by stations 1, 2, 3 and any combination of
six satellites. Since in general nine points define a second order surface,
these surfaces would have to coincide in order to fulfill such a condition. Thus
the general conclusion follows: the problem is singular whenever all the satellite

points and all four ground stations are lying on ene second order surface.
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